
A Lightweight Polyglot Code Transformation Language

AMEYA KETKAR∗†, Gitar Inc, USA

DANIEL RAMOS∗†, Carnegie Mellon University, and INESC-ID / IST, Universidade de Lisboa, Portugal

LAZARO CLAPP∗, Gitar Inc, USA

RAJ BARIK∗, Gitar Inc, USA

MURALI KRISHNA RAMANATHAN∗, Amazon Web Services, USA

In today’s software industry, large-scale, multi-language codebases are the norm. This brings substantial

challenges in developing automated tools for code maintenance tasks such as API migration or dead code

cleanup. Tool builders often �nd themselves caught between two less-than-ideal tooling options: (1) language-

speci�c code rewriting tools or (2) generic, lightweight match-replace transformation tools with limited

expressiveness. The former leads to tool fragmentation and a steep learning curve for each language, while

the latter forces developers to create ad-hoc, throwaway scripts to handle realistic tasks.

To �ll this gap, we introduce a new declarative domain-speci�c language (DSL) for expressing interdepen-

dent multi-language code transformations. Our key insight is that we can increase the expressiveness and

applicability of lightweight match-replace tools by extending them to support for composition, ordering, and

�ow. We implemented an open-source tool for our language, called PolyglotPiranha, and deployed it in an

industrial setting. We demonstrate its e�ectiveness through three case studies, where it deleted 210K lines of

dead code and migrated 20K lines, across 1611 pull requests. We compare our DSL against state-of-the-art

alternatives, and show that the tools we developed are faster, more concise, and easier to maintain.

CCS Concepts: • Software and its engineering→ Software maintenance tools.

Additional Key Words and Phrases: Source-code rewriting, Automated refactoring, Code cleanup

ACM Reference Format:

Ameya Ketkar, Daniel Ramos, Lazaro Clapp, Raj Barik, and Murali Krishna Ramanathan. 2024. A Lightweight

Polyglot Code Transformation Language. Proc. ACM Program. Lang. 8, PLDI, Article 199 (June 2024), 25 pages.

https://doi.org/10.1145/3656429

1 INTRODUCTION

Automated code transformation tools are crucial to facilitate refactoring [36], migrating code [25],
�xing bugs [6], managing technical debt and enhancing codebase maintainability [53]. However,
automating code transformations is challenging. Code transformations are usually a web of cascad-
ing and interdependent changes that span and propagate across multiple �les or repositories [30, 60].
Moreover, in contemporary domains like mobile development these changes also span across
programming languages (e.g., Android where Java and Kotlin co-exist and interoperate [7]).

∗This work was done when these authors were employed at Uber Technologies, Inc.
†Equal contribution at writing.

Authors’ addresses: Ameya Ketkar, ameya@gitar.co, Gitar Inc, San Mateo, California, USA; Daniel Ramos, danielr@cmu.edu,

Carnegie Mellon University, and INESC-ID / IST, Universidade de Lisboa, Lisboa, Portugal; Lazaro Clapp, lazaro@gitar.co,

Gitar Inc, San Mateo, California, USA; Raj Barik, raj@gitar.co, Gitar Inc, San Mateo, California, USA; Murali Krishna

Ramanathan, mkraman@amazon.com, Amazon Web Services, Santa Clara, California, USA.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and

the full citation on the �rst page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2024 Copyright held by Uber Technologies, Inc. Publication rights licensed to ACM.

ACM 2475-1421/2024/6-ART199

https://doi.org/10.1145/3656429

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 199. Publication date: June 2024.

This work is licensed under a Creative Commons Attribution 4.0 International License.

https://creativecommons.org/licenses/by/4.0/
HTTPS://ORCID.ORG/0000-0003-0402-0239
HTTPS://ORCID.ORG/0000-0002-2147-2176
HTTPS://ORCID.ORG/0009-0001-9773-7273
HTTPS://ORCID.ORG/0000-0003-4779-1391
HTTPS://ORCID.ORG/0000-0002-6568-017X
https://doi.org/10.1145/3656429
https://orcid.org/0000-0003-0402-0239
https://orcid.org/0000-0002-2147-2176
https://orcid.org/0009-0001-9773-7273
https://orcid.org/0000-0003-4779-1391
https://orcid.org/0000-0002-6568-017X
https://orcid.org/0000-0002-6568-017X
https://doi.org/10.1145/3656429

199:2 Ameya Ketkar, Daniel Ramos, Lazaro Clapp, Raj Barik, and Murali Krishna Ramanathan

Frameworks for automating code transformation vary widely. At one end of the spectrum,
lightweight techniques [5, 18, 58] o�er declarative languages to rewrite code with simple match-
replace rules. The key advantage of lightweight techniques is language agnosticism, which stems
from the techniques being independent of the underlying compiler infrastructure. Moreover, match-
replace rules are often syntactically close to the target language, making them easy to write
and use [58]. However, lightweight techniques are often limited to atomic context-free code
changes, lacking support for tasks requiring cascading and interdependent code changes. On the
other end, imperative frameworks [1, 14, 16] for AST-level manipulation allow for arbitrary code
transformations. They provide APIs to control where, when, and how code should be rewritten
based on context, symbol information, and analyses. However, these frameworks are monuments of
engineering, and demand signi�cant time and e�ort to learn [32]. Moreover, imperative frameworks
are often language-speci�c, and rely heavily on underlying compiler infrastructure. This results in
an additional burden when automation must support multiple languages or versions [53].

Our key observation is that the main bene�ts of imperative frameworks (i.e., the ability to encode
cascading and interdependent code changes, and leverage code context) can also be captured
by extending the match-replace system of lightweight techniques, while keeping its strengths.
Speci�cally, we design a Domain-Speci�c Language (DSL) to allow de�ning �ow and dependencies
between lightweight match-replace rules, as well as the ability to capture surrounding code context
by composing and using multiple match-replace rules.

The DSL provides strategies for specifying �ow and dependencies between match-replace rules
using the concept of a directed edge-labelled graph of match-replace rules. Speci�cally, nodes in the
graph represent individual transformations rules and the edges determine the order for applying
these rules. Each edge is also associated with a label that de�nes the scope in which the target rule is
applied with respect to the source rule. For example, an edge R1

class
−−−→ R2 reads as, “apply rule R1 and

then apply rule R2 within the enclosing class where R1 was applied”. Individual rules are expressed
by interleaving any source code matching language of choice (e.g., tree-sitter queries [13],
concrete syntax [11], or regular expressions [22]). Furthermore, rules can compose multiple
matchers and matching languages using a set of �lter primitives. Our intuition is that we can
approximate relevant symbolic information and code context for precise transformations by using
(1) multiple �lters for syntactic checks on the surrounding code context, (2) combining multiple
matching paradigms, and (3) using multiple interdependent rules 1.

There are several bene�ts to our approach. Firstly, it extends the traditional lightweight match-
replace system and makes it more expressive; in our domain speci�c language cascading code
transformations are a �rst-class citizen. Moreover, it allows us to create precise matches using
composition, even though our approach is lightweight in nature. Secondly, it inherits the familiarity

and retains the declarativeness from lightweight match-replace systems [58]. Lastly, it is polyglot. It
has native support for multi-language changes, which is hard to do with imperative frameworks.
We implemented our approach as PolyglotPiranha at Uber, a large software company. We

showcase PolyglotPiranha’s expressiveness by developing three complex automated code trans-
formation tools for - (1) deleting code related to stale feature �ags, (2) large-scale migration related
to Uber’s new Experimentation API, and (3) migrating an annotation processor . We evaluate the
e�ectiveness of these tools by applying them across Uber’s proprietary Android and iOS codebases
(around 7.5M lines of code LoC each). PolyglotPiranha-based tools deleted 210K LoC of stale code
and migrated 20K LoC of old code over 1611 Pull Requests (PRs) [27], where it automated between
73.4% and 100% of all the code changes for each use case. Further, we compare the PolyglotPi-
ranha-based tools with real-world production level tools developed upon alternatives - Imperative

1The soundness of the transformations depends on the accuracy and comprehensiveness of the rules in the graph.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 199. Publication date: June 2024.

A Lightweight Polyglot Code Transformation Language 199:3

1 class Flags { Ú

2 - // Declares location

3 - @Value("location")

4 - static boolean isLocEnabled() {...}

5 ...

6 }

(a) Java class declaring isLocEnabled.

1 class SomeClass {

2 ...

3 fun apply(x: Int) : Int{

4 - if(isLocEnabled() || x > 0) {

5 return x + 1

6 - }

7 - return 2

8 }

9 }

(b) A Kotlin class SomeClass using isLocEnabled.

Fig. 1. Cascading code changes a�er deleting the method isLocEnabled, and replacing its callsites with

true. Highlighted parts represent deleted portions of the code a�er the change.

frameworks (ErrorProne [1] and OpenRewrite [41]) and lightweight frameworks (Comby [58]). In
particular, we show that our PolyglotPiranha-based feature �ag cleanup tool is signi�cantly
faster than Piranha [53] (based on ErrorProne), by 42.5× on average, with similar accuracy. We
also show that PolyglotPiranha is on average 12.32× faster than Comby for feature �ag cleanup
due to ordering of rules and their controlled application within the scope, while also being more
concise than imperative variants.
In summary, our main contributions are:

(1) A new declarative language designed for automating code transformations. This language
allows users to express complex, multi-language code transformations (Section 3, Section 4).

(2) An extensive evaluation of the technique, demonstrating that it can address complex real world
code transformations. These tools have been applied and assessed across Uber’s codebase,
and compared against other state-of-the-art tools (Section 5).

(3) We open-source PolyglotPiranha, our implementation of the code transformation language,
as well as the tool implementations for feature �ag cleanup [57].

2 OVERVIEW

In this section, we provide an overview of our domain-speci�c language using an illustrative
example of a real-world code transformation task, simpli�ed from an automated cleanup task
performed at Uber using PolyglotPiranha (which we explain thoroughly in Section 5.1). We show
how this transformation is encoded and executed across a multi-language codebase by our tool.
Consider the code change in Figure 1a, where a developer deletes the method declaration

isLocEnabled (annotated with @Value(“location”)) from the Java class Flags, and replaces all its
usages with true. Figure 1b shows the Kotlin class SomeClass using the method isLocEnabled()

inside an if condition. In this class isLocEnabled is replaced with true, leading to cascading code
changes. Figure 2 shows the chain of code for this refactoring: (1) simplifying true || x > 0 to
true, (2) deleting the redundant if(true) statement, and (3) deleting the unreachable return.

To automate the code change in Figure 1, we can construct a graph of match-replace rules using
our DSL (detailed in Section 3), as depicted in Figure 3. The graph has a source / seed rule Delete

declaration, i.e., this rule instantiates and triggers the code transformations by deleting the method
declaration. The rule has two components: (1) match, and (2) replace. The match is a pattern, with
the holes :[trgt] and :[name], used to signify placeholders that can match arbitrary nodes in the
program’s parse tree 2. The replace indicates the replacement string. In this case, the replacement

2The holes are syntax-aware variants of named captured groups used in regular expressions [22].

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 199. Publication date: June 2024.

199:4 Ameya Ketkar, Daniel Ramos, Lazaro Clapp, Raj Barik, and Murali Krishna Ramanathan

class Flags { Ú

- // Declares location

- @Value(“location’)

- static boolean isLocEnabled() {

- ...

- }

}

Rule: Delete declaration

- import org.Flags.isLocEnabled

class SomeClass {

...

fun apply(x: Int) : Int {

if(isLocEnabled() || x>0){

return x + 1

}

return 2

}

}

Rule: Delete import

class SomeClass {

...

fun apply(x: Int) : Int {

- if(isLocEnabled() || x>0) {

+ if(true || x>0){

return x + 1

}

}

Rule: Update check

class SomeClass {

...

fun apply(x: Int) : Int {

- if(true || x>0) {

+ if(true) {

return x + 1

}

return 2

}

Rule: Simplify disjunction

class SomeClass{

...

fun apply(x: Int) : Int{

- if(true) {

return x + 1

- }

return 2

}

Rule: Simplify if true

class SomeClass{

...

fun apply(x: Int) : Int {

return x + 1

- return 2

}

}

Rule: Elide unreachable

code

Fig. 2. Code simplification steps a�er the function isLocEnabled is removed from the codebase, and its

callsites are replaced with true. This transformation a�ects Java and Kotlin files.

Delete Declaration

match @Value(“:[trgt]”)

static boolean :[name]() :[_]

replace with - using trgt

is_seed = true

Delete Import

match import org.corp.Flags.:[name]

replace with - using name

Update Check

match :[name]()

replace with :[value]

using value, name

Simplify disjunction

match true || :[c]

replace with true

Simplify if true

match if (true) :[c] else :[a]

replace with :[c]

Elide unreachable code

match return :[v]; :[b]

replace with return :[v];

Runtime Arguments: trgt : location ; value : true ;

Global
File

n-Ancestors n-Ancestors n-Ancestors

Fig. 3. Program in our DSL used for cleanup described in Figure 1. The references to the runtime arguments

(in the rules) are substituted with the appropriate value during execution.

is a deletion as indicated by replace with - . The clause using trgt signi�es that the rule is
dynamic, and takes as input the variable trgt. During this transformation, the reference :[trgt]

is substituted with the value location as indicated by runtime arguments. The rule matches and
deletes the method “isLocEnabled”, and name is bound to “isLocEnabled”. PolyglotPiranha also
detects and deletes the comment “// Declares Location” associated to isLocEnabled.

Rule graphs are explored in a depth-�rst fashion (as explained in Section 4). Each edge is labelled
with a scope, to determine where the next rule is applied with respect to the current rule. While
Global scope directs that the next rule should be applied everywhere in the codebase, File scope
restricts the application of the next rule within the enclosing �le where the current rule was applied,
and n-Ancestors scope limits the next rule to the = ancestors of the parse node rewritten by the

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 199. Publication date: June 2024.

A Lightweight Polyglot Code Transformation Language 199:5

<program> ::= <rule_graph> <substitutions>

<rule_graph> ::= <rule>+ <edge>*

<edge> ::= from string to (string, scope)

<scope> ::= Global | File | n-Ancestors

| Method | Class

<rule> ::= name string match <match>

[replace [template_variable] with <replace>]

[where <filters>]

[using <holes>]

[is_seed bool]

[belongs_to <groups>]

<match> ::= concrete_pattern | structural_query

| regular_expression

<replace> ::= string <replace>

| template_variable <replace> | <>

<filters> ::= enclosing <match> [<contains>]<filters>

| not_enclosing <match> <filters> | <>

<contains> ::= contains <match>

[at_least int] [at_most int]

| not_contains <match> | <>

<holes> ::= template_variable <holes> | <>

<groups> ::= string <groups> | <>

<substitutions> ::= <>

| template_variable value <substitutions>

Fig. 4. Syntax of our DSL for cascading code transformations. The elements inside square brackets are optional.

The symbols concrete_pattern, structural_query, regular_expression are expressions for pa�ern matching in

their respective languages (explained in Section 3); the symbol template_variable represents named capture

groups from the matched pa�erns.

current rule. In Figure 3, we observe the seed rule Delete declaration is connected to Delete

import with an edge labelled Global, therefore the latter is applied across the codebase.
To express interdependent code changes, the rules can use information from previous rule

applications (like previously matched code). For instance, the rule Delete import takes input
name, which is recorded in the previous rule Delete Declaration. Note that the value of name is
only known at run time, since it corresponds to the name of the method which is annotated as
@Value(“location”). In the example, name will be instantiated with isLocEnabled.

As observed in Figure 2, after �nishing the rule Delete import, PolyglotPiranha transitions to
the Update check rule, where the usages of isLocEnabled within the same File are replaced with
true. Notice that Update check also depends on the name of the method deleted and the replacement
value supplied originally, as indicated by the using keyword in Figure 3. Finally, a sequence
of cleanup rules is applied in order to simplify the code as much as possible. These sequential
transformations are shown in Figure 2. Note that each rule or rule sub-graphs can be re-used across
multiple tasks and languages. For instance, Delete import rule could potentially be used for a API
migration and Simplify Disjunction could be used across Java, Kotlin and Scala.

3 THE CODE TRANSFORMATION LANGUAGE

Our domain-speci�c language captures complex code transformations as a graph of interleaved
structural match-replace rules. The language provides o�-the-shelf strategies to compose rules,
propagate information between the rules, and control their application to speci�c scopes. In this
section, we will provide a higher level explanation of the syntax of this language, and Section 4
details the run time semantics.
Figure 4 describes the grammar of our DSL. At a high level, a program in the DSL is a graph of

match-replace rules. The rule graph is captured as a list of directed and labelled edges. Each node
represents an individual transformation rule that structurally matches and rewrites speci�c code
snippets. Rules can also just match code without transforming it (this is useful for e.g., �nding
variable names). The edges between rules specify which rule to apply next and the scope within
which it should be applied.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 199. Publication date: June 2024.

199:6 Ameya Ketkar, Daniel Ramos, Lazaro Clapp, Raj Barik, and Murali Krishna Ramanathan

3.1 Edge

As shown in Figure 4, the edges are directed and labelled. Each edge connects either two rules or
a rule to a rule group, de�ning the order in which they should be applied, akin to the andThen

operator3. The edge label speci�es the scope of application, selecting the portion of the code base
upon which the target rewrite rule is applied, with respect to the code that the source rule matched.
For example, an edge from R1

method
−−−−→ R2 , reads as “apply R1 and then apply R2 within the enclosing

method where R1 was applied”.
The DSL supports three language-agnostic prede�ned scopes as shown in Figure 4. (1) Global

the target rule is applied across the codebase, (2) File the target rule is applied in the enclosing
�le, and (3) n-Ancestors the target rule is applied to the nearest n tree nodes along the path up
towards the root, originating at the tree node of the code fragment that the source rule matched.
It is also possible to support other language-speci�c scopes that depend on the granularity of the
internal representation of code within the implementation. Our implementation, PolyglotPiranha,
represents code internally with tree-sitter [13], and supports (3) Method the rule is applied to the
enclosing method where the preceding rule was applied, and (4) Class scope refers to the enclosing
class. Note that the language speci�c scopes are set up only once per language.

3.2 Rule

Besides the name, a match-replace rule has four major components (1) match - a pattern to match
source code, (2) replace - a pattern to rewrite the matched code, (3) �lter - to �lter out certain
matches based on the surrounding code, and (4) holes - variables referenced in the rule, �lled at run
time and serve as the dynamic component of the rule. Furthermore, a rule could be a seed_rule.
These seed rules are entry points to the graph. This graph is traversed in a depth-�rst manner at
each location where the rule was applied. A valid rule graph contains at least one seed rule.

3.2.1 Match. The match expression is a declarative pattern that captures a code snippet with a
speci�c structure or shape (based on its parse tree). The match also labels portions of the matched
parse tree like the named captured groups [22] in regular expressions. Our DSL can support multiple
structural matching languages, as long as they support named capture groups (used to label portions
of the code as well as tag parts that need to be replaced). Supporting multiple matching languages
improves the expressiveness of PolyglotPiranha at matching code, as di�erent languages have
di�erent strengths. PolyglotPiranha’s current implementation supports three languages for its
match syntax: (1) concrete patterns, (2) structural queries, and (3) regular expressions. Next, we detail
the syntax of concrete and structural pattern matching languages supported by PolyglotPiranha.

Concrete Patterns: A concrete pattern is a string with template variables / holes, that is matched to
concrete syntax nodes [2] from the program’s parse tree 4. Formally, let B be a concrete pattern
containing holes of the form :[var1], where each hole can represent syntactically valid sub-trees. A
CST node C matches B if, traversing C in depth-�rst order yields leaf nodeswith a string representation
that aligns with B from left to right. Each hole can represent entire sub-tree structures (i.e., multiple
sequential leaf nodes under an internal node). This paradigm of matching is supported by multiple
other tools (e.g., [5, 58]). PolyglotPiranha adopts the syntax proposed by van Tonder and Le Goues
[58] in their tool Comby. However, our concrete patterns have stricter semantics compared to Comby.
In our concrete pattern, a template hole, :[x], matches whole syntactic structures / CST nodes,
whereas Comby templates can represent arbitrary strings. Figure 5 shows three examples.

3https://docs.oracle.com/javase/8/docs/api/java/util/function/Function.html#andThen-java.util.function.Function
4We use Concrete Syntax Trees (CST) over Abstract Syntax Trees (AST) because we must preserve all syntactic structures

within the source code, which are necessary for source code matching

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 199. Publication date: June 2024.

A Lightweight Polyglot Code Transformation Language 199:7

Rule Matched code snippet Capture Groups

match :[m_name]() isLocEnabled() m_name: isLocEnabled

match :[mod] :[type] isLocEnabled() :[body] static boolean isLocEnabled() {...}
mod: static type: boolean

body: {...}

match import org.corp.Flags.:[name] import org.corp.Flags.isLocEnabled name: isLocEnabled

Fig. 5. Example rules using concrete pa�erns applied across the files for the motivation example in Figure 1.

Rule Matched code snippet Capture Groups

match (binary_expression

(left: true) (operator: ||) right: (_) @other)
true || x > 0 other: x > 0

match (field_declaration (name:(identifier) @name)

(rhs:(string_literal) @rhs)

(#eq? @rhs "location")

public static String FLAG = "location" name: FLAG

Fig. 6. Examples rules using structural queries applied across the files for the motivation example in Figure 1.

Structured Query Language: A query consists of one or more patterns, where each pattern is an
s-expression or an xpath that matches a certain set of nodes in a syntax tree. These queries capture
the structure of the target pattern in terms of AST node types and string based predicates. This
paradigm is programming language agnostic, and is supported by systems like tree-sitter and
JavaML. PolyglotPiranha supports the s-expression based tree-sitter queries [12] (see Figure 6).

Each matching paradigm has distinct advantages and disadvantages. By construction structural
queries are more precise than concrete syntax because they can leverage node-types or absence of
particular nodes, and therefore leave less room for ambiguity (e.g., it is possible to di�erentiate
between a �eld and a local variable declaration). For example, matchingmethod declarations is easier
with structural query, because we would not need to account for all its syntactic variations (e.g.,
modi�ers like public, static, final) like in concrete syntax. In contrast, matching API invocation
pattern like isLocEnabled() (from Figure 1) the concrete pattern is convenient and more succinct.
The structural query for this pattern is verbose, and requires knowledge of the target language’s
grammar. Regex matching is more suitable for semi-structured documents like markdown �les.
Note that PolyglotPiranha is not tied to these three languages, more can be supported.

3.2.2 Replacement. The replacement pattern decides on how a matched code snippet should be
transformed. It is possible to either replace the entire matched code or just segments identi�ed by
a named capture group. The replacement expression / pattern can be seen as partial function that
is instantiated at run time by substituting a referenced named groups or template variables with
their values from either the initial match in the rule, or inputs to the rules declared with the using
keyword (i.e., code snippets captured in previous rule applications, or the input substitutions).
Figure 7 shows three examples.

3.2.3 Filters. To make the rules more precise and context-aware, our DSL provides filters

to control the application of a rule based on the surrounding code. First, the candidate code to
transform is checked against the matcher of the rule. Then, at each matched location, the �lters
will check if the surrounding code of this location satis�es certain criteria.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 199. Publication date: June 2024.

199:8 Ameya Ketkar, Daniel Ramos, Lazaro Clapp, Raj Barik, and Murali Krishna Ramanathan

Rule Source Code Update

match public static String :[name] = "location"

replace :[name] with SOME_:[name]

public static String FLAG = "location"

public static String SOME_FLAG = "location"

match isLocEnabled()

replace with true

if(isLocEnabled())

if(true)

match import :[q].isLocEnabled

replace with -
- import org.corp.Flags.isLocEnabled

Fig. 7. Example replacement rules using concrete syntax.

Rule Source Code Update

Delete unused local variable

match :[type] :[var_name] = :[rhs];

replace with -
where enclosing (method_declaration)

contains :[var_name] atmost 1

void consume() {

- int x = 10;

execute();

} Ú

Add import statement if absent

match (package_declaration) @p

replace with :[p] \n import java.util.List;

where enclosing_node (compilation_unit)

not_contains import java.util.List

package corp.util;

+ import java.util.List;

import java.util.Map;

class A

Map<String, String> m;

List<String> l;

} Ú

Fig. 8. Example rules using filters. Note how these rules leverage both concrete pa�ern and structural query.

There are two primitive �lters: (1) enclosing – checks if the primary match is enclosed by a parse
tree node that satis�es the given matcher, and (2) not_enclosing – checks if the primary match is not
enclosed by parse tree node that satis�es the given matcher. The enclosing �lters can be further
re�ned by specifying contains and not_contains expressions. The contains (not_contains)
expressions specify matchers that should (not) match at least once inside the enclosing_node. The
user can also specify the frequency of these matches with at_least and at_most attributes.

Figure 8 shows the rule delete unused local variable implemented using �lters. The match captures
the shape of a local variable declaration in Java, and replace deletes this matched code. The
enclosing �lter ensures that the primary match is inside a method declaration. It then checks
if the variable name (in the primary match) matches at most once within the method. If so, the
rule deletes the matched variable declaration statement (at_most is set to 1 to account for the
variable declaration itself). While this rule does not capture all the possible scenarios of unused
local variables, we found that this simple rule is very e�ective in practice. Similarly, the rule Add
Import statement if absent, matches the package declaration and adds the import under it i�. it
is not in the enclosing compilation unit (the root element of Java parse tree).

3.2.4 Holes. These serve as dynamic components within a rule. They describe input variables
to the rule. At run time, their corresponding values are populated from a symbol table (which
maintains the bindings from named captured groups to code snippets from current and previous

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 199. Publication date: June 2024.

A Lightweight Polyglot Code Transformation Language 199:9

Delete Feature Flag Decaration

match

@Flag(":[stale_flag]")

:[modifier] boolean :[mthd_name] (){ :[body] }

replace with

using stale_flag is_seed= true

Update feature �ag check

match :[mthd_name]()

replace with :[value] using value, mthd_name

Input Substitutions: stale_flag : location; value : true

Global

(a) Rule graph

class Flags { Ú

- @Flag("location")

- public static boolean isLocEnabled() { ... }

}

class Consumer{

fun consume() {

- if(isLocEnabled() || x > 0){

+ if(true || x > 0){

return 1

}

return 2

}

}

(b) Source Code Update

Fig. 9. Rules to cleanup stale feature flag location applied to the motivation example in Figure 2

applications). In short, a rule can reference the input substitutions provided in the program, or any
capture group that has been recorded when previous rules were applied.
The example in Figure 9 showcases the usage of these holes. The �rst rule in Figure 9b deletes

a public �eld that declares the stale �ag. At run time, the string location will be substituted for
:[stale_flag] in the rule as given by the input substitutions. Upon matching, this rule will capture
the name of the method used to check this �ag as :[mthd_name], which is recorded in a symbol table.
The next rule Update feature flag check uses the captured method name (:[mthd_name]) to
substitute all of its invocations with :[value] (holding the value true, from the input substitutions).

3.2.5 Groups. The belongs_to keyword serves as syntatic sugar to group rules under a common
name. Users can reference these named groups in the edge declarations as a shorthand to create an
edge between a rule and all rules in a group. For example, creating an edge between a rule and the
boolean_cleanup group serves as shorthand for linking the rule to every rule in that group.

3.3 Semantics-Driven Design

As authors, we designed the DSL using a semantics-driven approach [17]. We divided the domain of
code transformation into several sub-domains and crafted a micro DSL for each:

• the tree-sitter queries, concrete syntax, and regex handle code matching,
• the �lter language for re�ning the matches, and
• the edge declarations for de�ning �ow between rules.

Finally, we designed the syntax for rule and program that integrates these micro-DSLs (Figure 4).

4 LANGUAGE RUNTIME

4.1 Overview

Algorithm 1 provides a high level overview for the language implementation and runtime. The core
idea is to maintain a queue of seed rules, and traverse the graph and the �les in the codebase starting
from each seed rule. First, we validate the rule graph to prevent unexpected behavior using a
data-�ow analysis and syntactic checks on the rules (Line 1). After the validation, we push the seed
rules into a global queue and initialize an environment / symbol table with the input substitutions
(Line 3 - 4). The environment is used to store both the initial set of substitutions as well as the

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 199. Publication date: June 2024.

199:10 Ameya Ketkar, Daniel Ramos, Lazaro Clapp, Raj Barik, and Murali Krishna Ramanathan

Algorithm 1 Core procedure for transforming
code given a graph of rules

Input:

(R : RuleGraph, S : substitutions, C : path to

codebase)

1: if ¬validate(R,S) then

2: return

3: Q ← seedRules(R)

4: env← S

5: while notEmpty(Q) do

6: rule, _← Pop(Q)

7: loop

8: isApplied← false

9: for file in relevant(C, rule, env) do

10: isApplied ∨ =

11: executeRuleGraph(rule, file,R,Q, env)

12: if ¬isApplied then

13: break

Algorithm 2 ExecuteRuleGraph function

1: function executeRuleGraph(rule, file, R, mut Q,

mut env)

2: rulesStack← [(rule, file)]

3: isApplied← false

4: while notEmpty(rulesStack) do

5: rule, scope← pop(rulesStack)

6: rule← instantiate(rule, env)

7: while hasMatch(rule, scope) do

8: match← getMatch(rule, scope)

9: isApplied← true

10: ApplyEdits(match, rule, mut env)

11: for rule, scScope in successors(rule,R) do

12: if scScope ≡ Global then

13: Push(Q, (rule,Global))

14: else

15: scope← resolve(match, file, scScope)

16: Push(rulesStack, (rule, scope))

17: return isApplied

captured groups of from rule executions, which can be used as dynamic elements in subsequent
rules. Each seed rule is applied across the entire codebase recursively in a depth-�rst fashion (Line 5),
until no rules match (Line 7 - 13). For each relevant �le (e.g., a �le that is likely to contain the match
template of the rule, see Section 4.1.3), we invoke ExecuteRuleGraph (Algorithm 2). In this step, the
tool traverses over the CSTs and transforms the source code. For each match, it explores the rule
graph and stacks the rules in a DFS-manner (Line 11), applying them exhaustively within the scope.
The function ExecuteRuleGraph is not pure, it updates the environment, transforms the source code
in-place, and pushes new rules into the queue (Q). We detail each function of the algorithm more
thoroughly in subsequent sections.

4.1.1 Graph Validation. The �rst step in the core algorithm is to verify the graph (Line 1).
In our implementation, PolyglotPiranha statically validates the constructed graph to prevent
unexpected behavior when the graph is applied to the codebase. First, PolyglotPiranha checks if
the individual rules’ matchers and �lters are well-formed. For example, PolyglotPiranha ensures
that each regex compiles and that each s-expression parses correctly according to the language’s
grammar. It also conducts a data-�ow analysis to ensure that no path in the graph traversal leads
to a rule where an input variable is not initialized correctly. This is implemented as a de�nite
assignment analysis [23]. If the graph is incorrect, PolyglotPiranha alerts the user to prevent
panics that could result from accessing unde�ned variables.

4.1.2 Environment. The environment is a simple symbol table, which is initialized with the
substitutions from the program (Figure 4). Rules can access symbol table variables if they have
been declared. If a rule is triggered and a match is found, the symbol table is updated by binding
the matched source code to the corresponding named captured group in the symbol table. If a
variable already exists in the symbol table, its entry gets over written. Therefore a rule always gets
instantiated with the most recent binding of the referenced symbol from the environment. This
kind of dynamic variable scoping can also be observed in languages like LaTeX or Bash.

4.1.3 Relevancy check for performance. In rewriting large code bases, repeatedly parsing
the entire codebase is ine�cient, especially in monorepos with millions of lines. The goal of the

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 199. Publication date: June 2024.

A Lightweight Polyglot Code Transformation Language 199:11

function relevant is to optimize code rewriting by only parsing �les whose content matches the
concrete values assigned to the holes of the global rules (Line 9). In practice, the concrete values to
the input substitutions are used to �lter out �les that are not relevant to the transformation using
string matching. For example, in Figure 9 PolyglotPiranha would only parse the �les that contain
the string location. This is because stale_flag is mapped to location, and stale_flag is a hole in
the rule Delete Feature Flag Declaration. This simple insight improves PolyglotPiranha’s
overall performance. The implementation of PolyglotPiranha further boosts this by parallelizing
the lookup using fork-join frameworks (like Comby). Note that, PolyglotPiranha circumvents this
optimization for holes that are referenced inside the not_contains or not_enclosing clause.

4.2 Rule Graph Execution

Algorithm 2 describes the procedure executeRuleGraph that applies a given rule across a �le.
Each time a seed rule is triggered, we initialize a stack (ruleStack) for depth-�rst traversal of the rule
graph (Line 2). Then, we pop rules from stack and apply each rule exhaustively within the speci�ed
scope (until hasMatch is false as shown in Line 7). For each match, we update the environment
with the new capture groups and transform the source code by applying the rule (Line 10, and
Algorithm 3). Additionally, we also delete any associated commas and comments if necessary
(Section 4.2.1). Finally, we add the successors of the current rule in the graph to the local stack or
the global queue, and continue this until �x point (Lines 11 - 16).

Algorithm 3 ApplyEdits function

1: function ApplyEdits(match, rule, mut env)

2: updateEnv(match, env)

3: edit← getEdit(match, rule)

4: if isDelete(edit) then

5: edit← deleteCommaComments(edit)

6: apply(edit)

4.2.1 Deleting associated comments and trail-

ing commas. When we �rst deployed Polyglot-

Piranha based tools at Uber, we quickly realized
that just deleting the source code without address-
ing the comments was not su�cient to get a change
approved by code-reviewers. For instance, if we re-
move the �ag location in Figure 1, it would also be
crucial to delete any associated trailing comment,
such as // Declares Location, for maintainability
purposes. PolyglotPiranha deletes trailing com-
mas, trailing comments, and leading comments, a node is deleted from the parse tree.

It reasons about the immediate sibling (in the parse tree) of the deleted nodes. If the next sibling is
a comma, it updates the edit to delete this trailing comma. It then checks if the next or the previous
sibling is a comment on the same line (in the source code text) as the deleted node, and includes it
in the deletion. Finally, it checks if the previous node is a comment node and if it is the only node
that starts at that line in the source code text. If so, it is included in the deletion; and this last step
is performed recursively until no such comments are found. In our implementation, the user can
provide regex based rules to exclude speci�c (or all) comments from being cleaned up depending
on the programming language at hand.

4.2.2 Optimizations. PolyglotPiranha uses the tree-sitter [13] framework for parsing the
source code. PolyglotPiranha maintains only one parse tree object in its memory, and updates
this object sequentially leveraging the tree-sitter’s incremental parsing feature. This eliminates
the need to parse the �le again from scratch after the rewrite, thus optimizing PolyglotPiranha’s
overall performance. Additionally, to minimize the impact on the parse tree, by default our approach
(1) orders the rules from inner to outer scope: starting from the parent, to method, class, �le, and
�nally to global scope, and (2) rewrites code bottom up. These optimizations are e�ective and
eliminate the need for multi-threading.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 199. Publication date: June 2024.

199:12 Ameya Ketkar, Daniel Ramos, Lazaro Clapp, Raj Barik, and Murali Krishna Ramanathan

5 EVALUATION

We seek to answer the following research questions:

RQ1. [Expressiveness] How expressive is the DSL for real-world code transformation tasks? We
assess this through three case studies, focusing on high-impact refactorings crucial to Uber’s needs.
We highlight the complexity of each, and how to encode it in the DSL.
RQ2. [E�ectiveness and Usefulness] How e�ective is PolyglotPiranha at automating code

changes? To what extent are PolyglotPiranha-based tools useful in practice? We run the above tools
across Uber’s proprietary codebase, and measure the percentage of Pull Requests (PRs) [27] that
pass Continuous Integration (CI) [20] and are merged without manual intervention. For PRs with
intervention, we measure the LoC changed by tools versus developer.
RQ3. [Comparison with state-of-the-art] How do PolyglotPiranha-based tools compare to

similar tools built upon state-of-the-art frameworks? We compare the PolyglotPiranha-based imple-
mentation against the imperative variants developed upon ErrorProne [1] and OpenRewrite [41],
and against its declarative variants developed upon Comby [58] (a lightweight tool). We compare
implementations in terms of size, complexity and performance.

5.1 RQ1. Expressiveness

Experimental Setup. To showcase the expressiveness of the DSL we present three real-world
case studies where we automate complex code transformation tasks using PolyglotPiranha. In
each case study, we highlight the complexity of the task, and how the DSL can be used to encode it.
We chose these three case studies because they are high-impact tasks crucial to Uber’s operational
needs and they are representative of the tasks that Uber or other software companies would want
to automate. Moreover, these tasks are not trivial to automate using existing frameworks.

Update feature �ag

check to value

Delete Feature �ag

declaration

Cleanup tests

Simplify boolean

expressions

Inline local vari-

able and class

members

Simplify if state-

ments or ternary

expressions

Delete unused

local and private

members

Fig. 10. Strongly connected components of the

rule graph for feature flag cleanup.

5.1.1 Case study: Stale Feature Flag Cleanup.

Feature �agging is a widely adopted and highly en-
couraged practice at Uber 5, and other major soft-
ware companies [51, 52]. It allows developers to mod-
ify con�gurations without redeploying, supporting
A/B testing in production. However, feature �ags of-
ten become stale, and retaining them beyond their
original purpose can lead to technical debt. There-
fore, it is important to automate their removal. In-
deed, researchers [53] have developed the Piranha

tool for this purpose. Piranha is built on top of the
ErrorProne [1] frameworks for Java and SwiftSyn-

tax [3] for Swift. However, Uber’s codebase uses
Kotlin and Go too. Instead of developing two new
language-speci�c tools, we used PolyglotPiranha

to implement this transformation as one tool support-
ing Java, Kotlin, Swift and Go.

Figure 10 shows the strategy that we implemented for automating the cleanup of stale feature �ags
at Uber. Each node in this �gure is a strongly connected component or sub-graph of the original large
graph that was applied at Uber. Here, each subgraph is a cleanup category. For instance, Simplify
boolean expressions contains rules that simplify nested boolean expressions with conjunctions,
disjunctions and negations. These rules are recursively applied until the expression cannot be

5In fact, our motivating example is a simpli�ed version of feature �ag cleanup we performed internally.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 199. Publication date: June 2024.

A Lightweight Polyglot Code Transformation Language 199:13

- public enum IUIModesEnum { Ú

+ public interface IUIModes {

- DARK_MODE,

+ @Param(key="DARK_MODE")

+ BoolParam isDarkMode();

- LIGHT_MODE,

+ @Param(key="LIGHT_MODE")

+ BoolParam isLightMode(); }

(a) Example migration from enum-based feature

flag declaration to annotations.

1 class Consumer { Ú

2 CachedExp ce = new Experiment();

3 + IUIModes um = IUIModes.create(ce);

4 public String color() {

5 - return ce.isTreated(DARK_MODE)

6 + return um.isDarkMode().value()

7 ? "Black" : "White";

8 }

9 }

(b) Source code update a�er the migration of enums

to interfaces as shown in Figure 11a.

Find is treated Usage

match :[r].isTreated(:[stale_enum])

using stale_enum is_seed=True

Add Experiment �eld (if absent)

match CachedExp :[ce];

append \n :[exp_cls] um=:[exp_cls].create(:[ce]);

where

enclosing_node=(class_declaration)

not_contains= :[exp_cls] :[name] = :[rhs]

using exp_class

Populate Experiment �eld name

match private :[exp_cls] :[fld_name]

using exp_cls

Update Feature Flag Usage

match :[r].isTreated(:[stale_enum])

replace with

:[fld_name].:[mthd_name].value()]

using fld_name, mthd_name, stale_enum

Input Substitutions:

stale_enum : DARK_MODE;
exp_cls : IUIModes; mthd_name : isDarkMode

Class

Class
Class

Class

(c) Part of the original rule graph that migrates usages of the isTreated API. The input substitutions in the

bo�om right instantiates this graph to migrate the DARK_MODE feature flag described in this figure.

Fig. 11. Experimentation API usage update a�er the migration from enum-based feature flag declarations.

further simpli�ed. It should be noted how the Simplify boolean expressions and Inline local

variables and members call each other, until no more simpli�cation is possible. The Cleanup tests

sub-graph is particularly interesting. In this sub-graph we identify all the tests that explicitly set
the feature �ag to a speci�c Boolean value. If the set value is the same as the status of the feature
�ag we elide the setter, else we delete the test case.

Application.We applied this tool across the Uber’s Android and iOS codebase. For Android, an
additional challenge was the Java and Kotlin interplay, which PolyglotPiranha handles natively
as discussed in Section 4. The Experimentation team at Uber provides a live list of stale feature
�ags based on runtime values and various other factors. The tool is deployed at Uber, and it
continuously generates a PR for any new stale feature �ag. Our Java and Swift implementations
are behaviourally equivalent to Piranha, which was proposed by previous researchers for the same
task. Our tool’s output passes the tests from the extensive benchmark scenarios that the authors of
Piranha maintain, based on their experiences of running Piranha at Uber.

5.1.2 Case Study: Experimentation API Migration. The Experimentation team at Uber de-
veloped a new feature �agging API to support its growing needs. It was imperative for Uber to
transform thousands of lines of their Android code to use this new API.

Figure 11 showcases the code changes required for the migration. The previous feature-�ag API
declared feature �ags using enum data types. To adapt the code to the new API, these enums need to

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 199. Publication date: June 2024.

199:14 Ameya Ketkar, Daniel Ramos, Lazaro Clapp, Raj Barik, and Murali Krishna Ramanathan

company_kotlin_android_module(3

name = "src_release",

plugins = [

"- //libraries/compiler:processor" ,

"//libraries/utilitites",

],

+ kotlinc_plugins = [

+ "//libraries/processor-kt:processor"],

tests = [":test_release"],

visibility = ["PUBLIC"],

)

(a) Update to the BUCK file

- import com.co.ParameterUtils

interface UIParams{

@JvmStatic

fun create(cp:CachedParams): UIParams =

- ParameterUtils.create(UIParameters::class.java,cp)

+ UIParamsProvider.create(cp)

}

}

(b) Changes in the source code illustrating the

usage of the new Kotlin-based processor

Fig. 12. Examples of modifications in the BUCK and Kotlin files for the annotation processor migration.

be rewritten as annotated abstract methods (as shown in Figure 11a). These annotations were added
to specify metadata information for a feature �ag such as key and namespace. After migrating the
enum to an interface, this change has to be propagated. For example, consider the feature �ag usage
in Figure 11b. Previously, the isTreated method (Line 5) was invoked to check the status of the
feature �ag by passing the enum DARK_MODE, declared in Figure 11a. However, with the new design
clients are expected invoke the feature �ag method isDarkMode() as shown in Line 6.

In practice, this migration has to accommodate many other caveats. To complete this migration,
it is necessary to also add new �elds (e.g., IUIModes (Line 3, Figure 11b). This is handled by writing
two rules as shown in Figure 11c : (1) Add Experiment field - adds a �eld of type IUIMode (if
absent), and (2) Populate Experiment field name captures the name of the �eld of type IUIMode.
The �eld name (i.e.:[fld_name]) is used in the following rule Update Feature Flag Usage, which
is the actual rule used to replace the isTreated API. Other nuances include deleting consequently
unused members and imports and adapting test cases accordingly.

Application. This migration was executed on the Android codebase, involving 860 experimentation
feature �ags using the older API. Feature �ags were �rst grouped based on package and enum
declarations. For each �ag in the group, the tool was applied and then a PR was created for that
group. The Experimentation team shepherded these PRs. The rule graph has 28 rules.

5.1.3 Case Study: Annotation Processor Migration. The goal of this migration is to transition
the Android codebase from a Java-based annotation processor to a Kotlin-based system to improve
overall performance. The changes required for this migration are described in Figure 12.
This migration requires changing all the build con�gurations (written in BUCK [38]) to be

adapted by replacing the old processor dependency with the new one as depicted in Figure 12a.
Besides the build �les, it is necessary to migrate all Kotlin �les that initially used the Java processor
(shown in Figure 12b). For example, Figure 12b shows how ParameterUtils.create is replaced with
a Kotlin equivalent method, create, and the unnecessary import statement is deleted.

Application. This migration was orchestrated by a single engineer. The rule graph contained six
rules. A PR was created for 25 prede�ned sub-directories (of the Android codebase).

5.2 RQ2. E�ectiveness and Usefulness

Experimental Setup. To evaluate the e�ectiveness of PolyglotPiranha’s framework, we
evaluate the three tools from the case studies above by applying them to Uber’s proprietary code-
bases. Speci�cally, the Android codebase is composed of 7.5M LoC of Java and 2.5M LoC of Kotlin,

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 199. Publication date: June 2024.

A Lightweight Polyglot Code Transformation Language 199:15

E�ectiveness Usefulness

Application Language # PRs
PRs
(CI passes)

PRs
(Accepted)

�les
updated

#+/- Lines

Stale Feature
Flag Cleanup

 Java & Kotlin 2515 1413 817 2952 +15032 /-107635 †

 Swift 2186 1309 614 1733 + 21230 /-104721 ‡

Experimentation
API migration Java 155 89 155 2146 +19157 /-19041 §

Annotation processor
migration Kotlin & Python 25 25 25 2042 +2809 /-3897 ∥

† 85.7% was automated ‡ 95.3% was automated § 73.4% was automated ∥ 100% was automated

Table 1. PRS created and merged by the tool, as well as the % of LOC automatically deleted for each.

while the iOS codebase is composed of 7.5M LoC of Swift. The PRs produced by our tools are
reviewed by the appropriate teams, and merged if they pass the Continuous Integration [20] checks
and tests. The PRs that fail CI are expected to be manually �xed by the respective team before
merging.

Results Summary. Table 1 summarizes the overall results we obtained by running PolyglotPi-
ranha based tools over our proprietary corpora. For each application, it reports the number of
PRs created, PRs accepted (and merged), and PRs that pass the Continuous Integration checks and
tests. At large, the three tools produced 4881 PRs in the last six months of which 1611 have been
accepted and merged into the main codebase at the time of writing this paper. Particularly, for stale
feature �ag cleanup our acceptance rate is 52.5% (of PRs that pass CI) while for the migrations it is
unsurprisingly 100% (because the migrations were orchestrated centrally). These PRs have deleted
over 200k LoC of dead code and migrated over 20k LoC of old code to use the new APIs.

5.2.1 �ality of the automation.

Stale feature �ag cleanup. The data for this experiment was collected betweenApril and November
of 2023. PolyglotPiranha created a total of 4701 PRs, and reviewers did some kind of activity on
1727 (36.7%) of the total number of PRs. These activities include, accepting the PR and merging it,
commenting the PR, or patching the PR before accepting it. There are still 1410 PRs that pass all
CI checks and are still in queue for review. Further, the reviewers have marked 114 PRs as Needs
Changes status indicating that the they expect extra cleanup from the tooling. For most of these
PRs, the reviewers have reported issues with new features and bugs. The reviewers abandoned 182
PRs, to assert that the cleaned up feature �ags are not stale (i.e., the experiment is not over).

We observed that 56.2% of all the Android PRs and and 59.9% of the iOS PRs passed all CI checks.
The Uber’s CI not only builds and tests the change, but it also employs over a hundred linters and
bug-checkers to ensure the quality of the change meets the Uber’s high standards. These checkers
ensure there are no unreachable and unreferenced elements (e.g. UnusedMethod check [43]), no
sub-optimal code (e.g. ComplexBooleanConstant check [44]) and no nullability errors [9].
To further investigate why PRs were failing CI, we sampled 233 PRs from the 1979 failing PRs

(con�dence level: 95% and margin of error: 6%) for manual perusal. Two of the authors (with over
5 years of research and development experience) coded the failure reasons for the PRs using the
thematic analysis guidelines [55]. They �rst re�ned the code set on 20% of the PRs. Then, using
this code set, they independently coded another 20% of the patterns and came to a high level of
agreement. Then they coded the remaining corpus.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 199. Publication date: June 2024.

199:16 Ameya Ketkar, Daniel Ramos, Lazaro Clapp, Raj Barik, and Murali Krishna Ramanathan

0

500

1,000 - Tool User

% 90.4% 9.6%
` 21.7 21.4
[12 0

Stale feature �ag cleanup PRs (Android/iOS)

T
o
ta
l
R
em

o
v
ed

L
in
es

Tool Removed Lines User Removed Lines

(a) Lines deleted by feature flag cleanup PRs

0

200

400

600

800
- Tool User

% 73.4% 26.6%
` 156.4 92.3
[88 22

Experimentation API migration PRs (Android)

T
o
ta
l
U
p
d
at
ed

L
in
es

Tool Updated Lines User Updated Lines

(b) Lines updated by API migration PRs

Fig. 13. Lines deleted/updated by tool (blue) vs users (red)

Figure 14 summarizes our observations. We categorized 99 PRs as Test failures, where they
failed to pass one of the integration or unit test cases. The 72 PRs marked as Incomplete cleanup

failed one of the linter or static analysis checks. In both categories, the failures stem from the fact
that PolyglotPiranha did not complete the cleanup. Most of these failures can be resolved by
re�ning rule graphs to be more comprehensive and account for more edge cases, a process we have
iteratively conducted at Uber. However, we noticed that some PRs that fail linters cannot be �xed
by re�ning rules due to PolyglotPiranha ’s conservative approach in computing def-use chains
and call-graphs. This leads to being unable to delete/inline private variables/private-methods in
presence of variable shadowing or re-initialization (see Section 6).

Category Frequency

Test Failure 99
Incomplete Cleanup 72
Unsupported Patterns 28
Over Deletion 23
Bugs in the tool 7
Infra issues 4

Fig. 14. Analysis of 233 PRs failing CI

In the 28 (12%) PRs in the unsupported pattern category,
the build target failed to compile because the tool was
unable to cleanup all the usages of the feature �ag. These
failures are expected and happen by design. The exper-
imentation API maintains a strict coding guideline for its
usage, and the maintainers decided not to provide any
automated cleanups/migration support when the con-
vention is violated. The failing 23 PRs (9.9%) in the over
deletion category failed to compile because PolyglotPi-
ranha wrongly deleted code due to unsound/incorrect
rules. A large portion of these correspond to the iOS vari-
ant, that currently does not reason about the usages of
private methods in struct implementations in other �les. Therefore, it ends up unnecessarily deleting
private methods. We also identi�ed bugs in the implementation in 7 (3%) PRs (bugs in the tool),
which we will �x in future releases. Additionally, there was a problem with the bot that orchestrates
PolyglotPiranha PRs internally in 4 (1.7%) PRs (infra issues).

Experimentation API. For the Experimentation API migration, we observed that 89 (59.9%) PRs
passed all CI checks. The main reason migration PRs to fail was non-standardized usage of the
API and usage of some speci�c API patterns that were not automated. Nonetheless, the tool still
automated 73.4% of all lines deleted. The migration was driven centrally by the team, therefore

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 199. Publication date: June 2024.

A Lightweight Polyglot Code Transformation Language 199:17

0 5 10 15 20

10
1

10
2

10
3

Stale Feature Flags (ordered by sub-target size)

T
im

e
re
q
u
ir
ed

(s
ec
o
n
d
s)

Piranha

Comby variant

PolyglotPiranha

(a) Time required to perform the cleanup. Flags are

ordered by target size.

0 5 10 15 20

10
1

10
2

Stale Feature Flags (ordered by sub-target size)

D
el
et
ed

L
o
C

Piranha

Comby variant

PolyglotPiranha

(b) Lines of code deleted for each tool. Flags are or-

dered by target size.

Fig. 15. Comparative analysis of Comby, Piranha, and PolyglotPiranha for stale feature flag clean up.

the all the PRs were immediately acted upon after creation. The team reviewed these PRs, patched
them if necessary and landed them.

5.2.2 Automation Ability. To study the manual e�ort involved in each merged PR, we compute
the number of lines removed by the tooling automatically and the subsequent manual e�ort.
Figure 13 shows this data for for each stale feature �ag cleanup and Experimentation API migration

PR that was merged, as a stacked bar chart. The annotation processor migration was fully automated.

Stale Feature Flag Cleanup. The tooling has deleted 85.7% and 95.3% of all the total deleted lines
across the Android and iOS codebases (90.4% gross) respectively across all merged PRs, as shown
in Figure 13a. We observed that 75.9% of the PRs that were merged required no user intervention.
However when the developer did intervene, they deleted a lot of code before merging the PR, hence
the mean number of lines deleted by user is skewed (` = 21.4, [= 0). In few outlier cases developer
deleted more than 900 lines of code. Probing further into these outlier PRs, we discovered that
developers had removed a collection of top-level classes that were guarded by the �ag. Some of
these scenarios will be incorporated into the next version of our tool. However, very precise and
general support for such cleanups is impractical in our lightweight approach.

Experimentation API Migration. The tooling has migrated 73.4% of the total lines deleted, however
we observed that more than 74.8% PRs needed some manual intervention. In these cases developers
on average updated another 92 lines upon the changes proposed by the tool. We observed that
Uber developers also made manual changes to the PRs that pass CI. These changes include class
deletions, removing unused data �les, updating comments and method names. While re�ning rules
can resolve certain scenarios, some require symbol or type information, and others, such as method
renaming and updating documentation, are beyond the scope of traditional tools. We also observed
that the team knowingly used the tool to perform partial migrations even for cases where all APIs
were not supported. The small spikes towards the tail end of the chart show these scenarios.

5.2.3 Complexity of changes. To understand the complexity of the changes, we reason about
the number of �les touched per change. We observed that an average of 3.63 �les ([= 3) were
touched per stale feature �ag cleanup PR. In six outlier cases 40-50 �les were touched, where 90% of
them were deleted (there are three cases that delete between 900-1000 LoC in Figure 13a). Further
investigation revealed that a majority of these �les contained supporting classes that were guarded
by feature �ag cleanups and resource �les referenced in these deleted �les. More powerful static

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 199. Publication date: June 2024.

199:18 Ameya Ketkar, Daniel Ramos, Lazaro Clapp, Raj Barik, and Murali Krishna Ramanathan

analysis could potentially �nd these cases, however our syntactic approach cannot handle general
unreachable code.

5.3 RQ3. Comparison with state-of-the-art code rewrite frameworks

5.3.1 Performance.

Experimental Setup. We compare PolyglotPiranha-based stale feature �ag cleanup against
Piranha [53] and an equivalent we develop based upon Comby [58]. The Comby implementation has
29 rewrite rules for Java. It was particularly easy to develop the Comby variant because PolyglotPi-
ranha’s concrete syntax DSL is inspired by Comby. For this evaluation, we chose 24 stale feature
�ags randomly from the PRs that (1) passed CI but were not accepted (at the time of writing this
paper) (2) were used in Java �les (because Piranha only supports Java). Note that we only chose
24 feature �ags because it takes signi�cant manual e�ort to integrate Piranha within our infras-
tructure due to Piranha depending on compilation6. For each feature �ag, we noted the a�ected
sub-targets and their sizes. We then applied the three tools across the sub-targets and the execution
time was recorded. These experiments were performed on an enterprise-class VM in Google Cloud
Platform. Note that we neither compare the quality of the cleanups nor precision because by con-
struction Comby uses a more loose representation of code, based on Dyck-extended grammars [58]
(i.e., balanced parenthesis grammars), whereas PolyglotPiranha uses language-speci�c grammars
from the tree-sitter reportoire, hence PolyglotPiranha transformations are more powerful
and precise. Conversely, ErrorProne and OpenRewrite can leverage semantic information like
symbol/name resolution, for higher precision and applicability, but are not polyglot.

Results. The line chart in Figure 15a shows the performance of each of the tools for the set of
�ags we identi�ed above (ordered by the size of the corresponding sub-targets, ranging from 1.2K
to 1.8M LoC). PolyglotPiranha took an average of 9.74 ± 3.46 seconds, Comby 121.67 ± 179.03

seconds (12.32×), and Piranha 413.91 ± 521.94 seconds (42.5×). We can see Piranha’s execution
increases almost linearly with the target size (due to the fact that Piranha relies on building the
target). PolyglotPiranha and Comby depended on the number of passes and �les a�ected for the
refactoring. The fact that PolyglotPiranha is faster than the Comby-based variant is surprising
because Comby has a string based matching approach with minimal overhead. These results can be
attributed to the fact that Comby has no sense of ordering between rules (nor scope), therefore, the
match-replace rules are applied across the entire subtarget. PolyglotPiranha’s performance is
also attributed to optimizations discussed in Section 4.1.3 and 4.2.2.
Figure 15b shows the number of lines deleted by each of the tools for the same set of �ags (in

the same order). PolyglotPiranha deletes more lines of code because it’s able to delete trailing
commas and comments. Note that we manually vetted that there are no over deletions in these PRs.
In summary, PolyglotPiranha is consistently faster while deleting more lines than its imperative
alternative Piranha and a lightweight Comby-based alternative.

5.3.2 Expressiveness and Ease-of-use.

Experimental Setup. We compare the implementation of PolyglotPiranha-based tools against
their imperative variants. Speci�cally, we compare the PolyglotPiranha-based Stale Feature �ag
cleanup program against the implementation of Piranha [53]. Further we also encode three pre-
existing code transformation recipes developed by professional tool builders, speci�cally OpenRewrite
- (1) (JHipster Upgrade) Fix CWE-338 with SecureRandom [45] (2) (Slf4j) Loggers should be named

6While Piranha was developed and was previously integrated at Uber, however, both Uber’s feature �ag API and developer

infrastructure have changed since then

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 199. Publication date: June 2024.

A Lightweight Polyglot Code Transformation Language 199:19

Table 2. Comparison of PolyglotPiranha tools against existing implementations

Bug Fixes Feature Flag Cleanup

Tool Metric CWE-338 slf4J java.security Android iOS

PolyglotPiranha
LoC 68 31 23 654 1156

rules 4 3 3 31 42

Error-Prone LoC - - - 3467 -
SwiftSyntax LoC - - - - 1316

OpenRewrite LoC 145 87 92 - -

Comby # rules - - - 29† -

† This feature �ag cleanup variant was developed for the experiments.

for their enclosing classes [46] (3) (java.security) Use secure temporary �le creation [48]. The
selected patterns are (1) related to a popular Java library (2) involve multiple interdependent
changes (3) have associated test cases for validation (4) clearly �x a bug or security vulnerability.

Stale feature �ag cleanup. As discussed in Section 5.3.1, Piranha is a stale feature �ag cleanup
tool with multiple implementations, one for each language supported. This is because Piranha is
built upon language-speci�c imperative frameworks for code analysis and rewriting. To compare
the expressiveness and conciseness of both approaches, we qualitatively and quantitatively compare
the PiranhaJava and PiranhaSwift variants against their PolyglotPiranha-based counterparts.

PiranhaJava is built upon the ErrorProne [1] framework, whereas PiranhaSwift uses Swift-
Syntax [3]. Table 2 (right) shows that PolyglotPiranha based approach is signi�cantly more
concise in terms of LoC. Moreover, rules can be re-used across languages (e.g., simplify disjunction
in Figure 3 is language-agnostic). PolyglotPiranha-based Swift variant is more powerful than
PiranhaSwift (e.g., supports variable inlining and cleanup of the unused members).

In contrast, our Comby implementation for feature �ag cleanup in Java comprises 29 rules. Due to
Comby’s limitations, we were unable to express 10 transformations from our PolyglotPiranha im-
plementation, including inlining singly-used boolean variables, deleting unused �elds and variables,
removing unnecessarly nested blocks, and deleting �les under certain conditions and enum blocks.
Despite this, the rule count di�erence is minor: 31 for PolyglotPiranha versus 29 for Comby.
This is because PolyglotPiranha allows for the use of di�erent, more powerful transformation
languages. For instance, tree-sitter queries provide a syntax for complex alternations. Therefore,
the Comby variant ends up being more verbose, requiring additional rules for the same task.

OpenRewrite. OpenRewrite project is a semantic code search and transformation ecosystem.
Its platform allows writing code transformation recipes for common framework migration and
stylistic consistency tasks. We picked three relevant recipes written by professional developers,
corresponding to high-impact transformations. We implemented the same refactoring actions using
PolyglotPiranha. Table 2 shows the LoC count and number of rules for both PolyglotPiranha

and OpenRewrite recipes. Our implementations pass the tests of the OpenRewrite recipes.

6 LIMITATIONS AND DISCUSSION

Transformation Correctness. PolyglotPiranha does not guarantee that the transformed code
will compile, be semantically correct, or precisely re�ect the developer’s intent. This limitation is
common to other syntax-driven code transformation tools such as [5, 18, 58]. While our data�ow
analysis veri�es the rule graph’s consistency and grammatical accuracy (Section 4.1.1), the e�ec-
tiveness and accuracy of transformations ultimately rely on the quality of the rule graph itself.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 199. Publication date: June 2024.

199:20 Ameya Ketkar, Daniel Ramos, Lazaro Clapp, Raj Barik, and Murali Krishna Ramanathan

Syntactic Limitations. PolyglotPiranha’s purely syntactic approach limits its ability to perform
transformations that require semantic information of the code. In practice, this means that code
rewrites that require type resolution, class hierarchy analysis, and/or control-�ow analysis can not
be expressed in the DSL today. Speci�cally, PolyglotPiranha: (1) lacks precise def-use information.

We designed rules conservatively to identify def-use relationships within the syntactic scope of the
variable declaration. However, due to the lack of SSA representation and dominator information
PolyglotPiranha cannot reason about variable shadowing or re-initialization. (2) lacks precise
type information. We approximate type information by analyzing declarations within a scope.
This falls short when dealing with language features that obscure type information, such as
Java’s var keyword or dynamically typed languages like Python. (3) lacks call-graph analysis.

We approximate caller-callee relationships using method names and their number of arguments,
resulting in imprecision in the presence of interfaces, class hierarchies, and method overloading.
(4) cannot handle advanced language features that require semantic analysis, such as re�ection.

Despite these limitations, our evaluation showcases that PolyglotPiranha is e�ective at au-
tomating three real-world code transformation tasks. Though imperfect, even in cases where it
was partial, this automation substantially alleviated developers’ load as seen in Figure 13a.

Supporting New Languages. At Uber, PolyglotPiranha supports languages beyond the ones
listed in the evaluation, including Go, Python, Scala, Typescript, as well as protocol formats like
Thrift. PolyglotPiranha uses tree-sitter for code parsing, thus supporting a new language
requires: (1) incorporating the tree-sitter grammar within PolyglotPiranha, and (2) authoring
scope-capturing rules in a con�guration �le (i.e., one rule per scope such as class, method, or
�le). PolyglotPiranha uses these scopes when applying rules from the rule graph. Note that
tree-sitter o�cially supports 133 programming languages [13], including functional languages
like Haskell and Scheme. In fact, we support Scheme as a language in PolyglotPiranha, and use it
within PolyglotPiranha’s implementation for rewriting its structural queries (a subset of Scheme).
The implementation burden for this support was minimal and comparable to other languages.

Adapting PolyglotPiranha-based tools, like those for feature �ag cleanup, to new languages
may require additional work. For example, a rule for simplifying a disjunction (true || :[a]) in
Java needs to be customized for Python as true or :[a]. However, we observed that some rules
are reusable within a broad family of languages (Java, Kotlin, etc).

PolyglotPiranha’s Usability. To assist users in debugging and root-causing failures due to
errors in the rule graph, PolyglotPiranha outputs detailed reports of all executed rules (in order)
including their corresponding matched LoC ranges, and runtime arguments in an easily queryable
format. This allows for step-by-step replay and analysis. Our repository contains examples that
explain how to enable debugging mode. We have also developed a playground for rule experimen-
tation that allows users to easily experiment with rules and rules graphs on code snippets. This
playground is publicly available on our artifact.

Note that we did not conduct any usability study as part of this paper. However, it’s noteworthy
to mention that the rules for Feature Flag Cleanup (iOS) and Annotation Processor migration were
crafted by iOS and Android app developers at Uberwho were not familiar with PolyglotPiranha’s
internals and were not part of our research team.

7 FUTURE WORK

One way to improve precision and circumvent some problems described in Section 6 would be to
extend the syntax to support matching semantic information based on type resolution or hierarchy
analysis, similar to how previous researchers [31] extended the Comby syntax. An option would
be to use a Language Server Protocol [39] (LSP) to provide semantic information on variables

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 199. Publication date: June 2024.

A Lightweight Polyglot Code Transformation Language 199:21

and bindings. For example, it would be possible to get type information for holes in rules (e.g.,
isFlagEnabled(:[x]), where :[x] is of type string). However, LSP integration is non-trivial.
Since our framework rewrites code in-place, it e�ectively invalidates some of the information
provided by LSP before the rewrite. A solution would be to incorporate incremental analysis
frameworks [4]. As an alternative, adding support for CodeQL might o�er deeper analysis of code
over simple tree-sitter queries. However, integrating CodeQL involves interfacing with the
compiler and build infrastructure, and such e�ort may not be trivial.

PolyglotPiranha’s rules support multiple match-replace languages, catering to di�erent users.
It has been observed by [58] that maintaining a tool rooted in declarative code rewrite methodologies
is more straightforward than other methods. In Section 5, we demonstrate more concise programs
in our DSL compared to their imperative counterparts. With generative AI, learning and assisting
users at writing PolyglotPiranha rules is a promising direction to explore.

8 RELATED WORK

8.1 Declarative code transformation tools

Multiple language-speci�c declarative transformation tool sets, such as Coccinelle [35] for C, and
Refaster [59] for Java, have been proposed. Variants of these tools include Coccinelle4J [28] for
Java and GoPatch [26] for Go. Since they are built using language-speci�c infrastructure they can
leverage semantic information, such as control �ow, to enable precise transformations. However,
signi�cant e�orts are required to introduce and maintain new language front-ends for these tools.
In contrast, lightweight tools tools like Comby [58] and ast-grep [5] provide alternatives that do
not rely on a speci�c compiler infrastructure and are language-agnostic. However lightweight
tools generally have limited understanding of code context and semantics, making it challenging to
express non-atomic transformations. In contrast, our DSL extends lightweight tools by providing
primitives and operations to increase expressiveness and applicability of match-replace rules.

Language workbenches, like Spoofax [29] (which incorporates Stratego [11]) and Rascal [33],
o�er comprehensive toolsets for designing and implementing languages, including metalanguages
for writing code transformations. Similary, DMS [10] also provides a declarative rewrite language
for transforming code and allows users to combine it with procedural rewrites. However, these
tools require the speci�cation of the target language’s grammar and its extension to support meta-
syntax using the toolset. Unlike language workbenches, PolyglotPiranha does not concern itself
with the matching language or the target language. It e�ectively delegates the code rewrite to a
match-replace tool, following a more pragmatic approach. Moreover, PolyglotPiranha introduces
rewrite strategies in a new graph-based paradigm that uses minimal meta-syntax.

TXL [15] is a multi-language transformation tool that requires users to write both grammar
speci�cations and transformation rules within the TXL language. TXL transformations often use
non-terminal symbols in rewrite rules, which makes them non-trivial to write and use. Cubix [34]
provides an alternative multi-language solution using compositional data types. Cubix, as described
by its authors, is not for the lay programmer [34] and requires signi�cant e�ort and expertise to
learn. PolyglotPiranha, on the other hand, o�ers multiple matching languages ranging for simple
regex to structural query languages.

Query languages for code that support complex analyses, namely CodeQL [24], could also be used
in our rule language, as an alternative to concrete syntax or tree sitter queries. This will enhance
precision of rule matching with semantic awareness, and could be useful in some scenarios. Note,
however, that CodeQL has limited language support, and might introduce performance overheads
and require additional integration e�orts due to its build system dependency.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 199. Publication date: June 2024.

199:22 Ameya Ketkar, Daniel Ramos, Lazaro Clapp, Raj Barik, and Murali Krishna Ramanathan

8.2 Imperative code transformation tools

Previously researchers and tool builders have invested heavily in the development of advanced
refactoring [19, 21, 30, 56], migrations [8, 47, 50] and cleanup tools [53] upon imperative frameworks
like such as Clang LibTooling [14] for C/C++, ErrorProne [1] or OpenRewrite [41]. In particular,
OpenRewrite (which is language-speci�c) o�ers a framework akin to PolyglotPiranha for crafting
reusable recipes. Unlike PolyglotPiranha, OpenRewrite uses an imperative approach based
on visitors to implement the recipes. While PolyglotPiranha ’s rule-graphs can generally be
implemented as visitors, the reverse is not necessarily true. Our comparison (Section 5.3.2) suggests
that some realistic OpenRewrite recipes can be translated into concise rule graphs. Imperative
frameworks are usually built around compiler infrastructure and can leverage symbolic information
(e.g., name resolution), and other semantic information. Their usage is justi�ed in cases where the
some in-depth analysis is needed. However not all code transformations in the real world require
such heavy-weight infrastructure (as shown in Section 5.1). On the other hand, our approach
provides a declarative DSL to express code transformations as a graph of match-replace rules rather
than visitor-style programs. Our implementation leverages the tree-sitter framework for parsing
the code in multiple languages (necessary for rule application with scopes).

8.3 Program Synthesis

Instead of expecting the user to express the code transformations in a DSL, researchers have
proposed refactoring-by-example approaches. These approaches infer the transformations as a
program in a low level DSL from input-output examples. For example, LASE [37] and Bluepencil [40]
infer an edit script from two example edits. More recently, Overwatch [61] integrates refactoring
by example ideas into core IDE infrastructure to learn edit sequences, not just from input-output
examples but also intermediate steps (i.e. using temporal context). MELT [54] and TC-Infer [31]
uses input-output examples of migrations and type changes from the code history to learn a set of
edit rules in the Comby language. Potentially, these and other refactoring-by-example approaches
could learn the transformation as programs in our DSL.
On the other end, black-box synthesis approaches aim to transform code directly rather than

generating edit scripts. SOAR [42] uses documentation from two closely aligned libraries to migrate
code from one to the other, without relying on particular examples and training data. More recently,
LLMs like GPT-4 [49] have been used to identify and automate some non-trivial localized edits
from language and examples. However, we are not aware of any comparable LLM-based tools that
support the automations described in Section 5.1 at an industry scale.

9 CONCLUSION

Automating code transformations is crucial for increasing maintainability and code quality metrics
in growing codebases. To ease this e�ort, developers rely on automated code transformation
languages and toolsets. We propose a new DSL, as well as a tool based on the language named
PolyglotPiranha. Our language leverages existing lightweight match-replace paradigms and
makes them more generally applicable by providing a set of primitives for cascading and composing
rules. The key idea is to use multiple syntactic checks for precise transformations. The approach
results in a lightweight, familiar language for automating large-scale changes. We demonstrate
the e�ectiveness of tools developed upon PolyglotPiranha across three use cases, and evaluate
them in our proprietary corpora. So far, we have deleted over 210K LOC and migrated 20K LOC with
PolyglotPiranha-based tools. In all use cases, the tool was able to automate between 73.4% and
100% of the necessary changes, yielding signi�cant productivity gains.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 199. Publication date: June 2024.

A Lightweight Polyglot Code Transformation Language 199:23

ACKNOWLEDGMENTS

We appreciate Satyam Shubham, Adarsh Pandey, and Diego Marcilio for being the initial users of
the PolyglotPiranha DSL and o�ering valuable feedback. We would also like to thank Nada Attia
for developing the infrastructure to automatically create di�s. Additionally, we extend our thanks
to Arun Babu ASP and Mahesh Hada from the Experimentation team, as well as the Android and
iOS monorepo teams, for their support to operationalize PolyglotPiranha at Uber.

Daniel Ramos is supported by Portuguese national funds through FCT, Fundação para a Ciência e
a Tecnologia, under PhD grant SFRH/BD/150688/2020. All statements made are those of the authors
and do not necessarily re�ect the views of any funding agency.

REFERENCES

[1] Edward Aftandilian, Raluca Sauciuc, Siddharth Priya, and Sundaresan Krishnan. 2012. Building Useful Program

Analysis Tools Using an Extensible Java Compiler. In Proc. International Working Conference on Source Code Analysis

and Manipulation. IEEE Computer Society, Riva del Garda, Italy, 14–23. https://doi.org/10.1109/SCAM.2012.28

[2] Alfred V. Aho, Ravi Sethi, and Je�rey D. Ullman. 1986. Compilers: Principles, Techniques, and Tools. Addison-Wesley,

Boston, MA, USA. https://www.worldcat.org/oclc/12285707

[3] Apple. 2024. SwiftSyntax Documentation. Apple Inc. https://swiftpackageindex.com/apple/swift-syntax/509.0.0/

documentation/swiftsyntax Accessed: 2024-03-06.

[4] Steven Arzt and Eric Bodden. 2014. Reviser: e�ciently updating IDE-/IFDS-based data-�ow analyses in response

to incremental program changes. In 36th International Conference on Software Engineering, ICSE ’14, Hyderabad,

India - May 31 - June 07, 2014, Pankaj Jalote, Lionel C. Briand, and André van der Hoek (Eds.). ACM, 288–298.

https://doi.org/10.1145/2568225.2568243

[5] Astgrep. 2024. ast-grep: write code to match code. Open-source. https://ast-grep.github.io Accessed: 2024-03-06.

[6] Johannes Bader, Andrew Scott, Michael Pradel, and Satish Chandra. 2019. Geta�x: Learning to �x bugs automatically.

Proceedings of the ACM on Programming Languages 3, OOPSLA (2019), 1–27.

[7] Sora Bae, Sungho Lee, and Sukyoung Ryu. 2019. Towards understanding and reasoning about Android interoperations.

In Proc. International Conference on Software Engineering (ICSE), Joanne M. Atlee, Tev�k Bultan, and Jon Whittle (Eds.).

IEEE / ACM, Montreal, QC, Canada, 223–233.

[8] Ittai Balaban, Frank Tip, and Robert Fuhrer. 2005. Refactoring Support for Class Library Migration. In Proceedings

of the 20th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications

(San Diego, CA, USA) (OOPSLA ’05). Association for Computing Machinery, New York, NY, USA, 265–279. https:

//doi.org/10.1145/1094811.1094832

[9] Subarno Banerjee, Lazaro Clapp, and Manu Sridharan. 2019. NullAway: practical type-based null safety for Java. In

Proc. Symposium on the Foundations of Software Engineering (FSE), Marlon Dumas, Dietmar Pfahl, Sven Apel, and

Alessandra Russo (Eds.). ACM, Tallinn, Estonia, 740–750. https://doi.org/10.1145/3338906.3338919

[10] Ira D. Baxter, Christopher W. Pidgeon, and Michael Mehlich. 2004. DMS®: Program Transformations for Practical

Scalable Software Evolution. In 26th International Conference on Software Engineering (ICSE 2004), 23-28 May 2004,

Edinburgh, United Kingdom, Anthony Finkelstein, Jacky Estublier, and David S. Rosenblum (Eds.). IEEE Computer

Society, 625–634. https://doi.org/10.1109/ICSE.2004.1317484

[11] Martin Bravenboer, Karl Trygve Kalleberg, Rob Vermaas, and Eelco Visser. 2008. Stratego/XT 0.17. A language and

toolset for program transformation. Science of computer programming 72, 1-2 (2008), 52–70.

[12] Max Brunsfeld. 2018. Tree-sitter: A New Parsing System for Programming Tools. Strange Loop Conference. Available

online: https://thestrangeloop.com/2018/tree-sitter---a-new-parsing-system-for-programming-tools.html.

[13] Max Brunsfeld. 2024. Tree-sitter. GitHub. https://tree-sitter.github.io/tree-sitter/ Accessed: 2024-03-06.

[14] Clang. 2024. Clang LibTooling. Accessed: 2024-03-06.

[15] James R Cordy. 2004. TXL-a language for programming language tools and applications. Electronic notes in theoretical

computer science 110 (2004), 3–31.

[16] Detekt. 2024. Detekt: A static code analyzer for Kotlin. https://detekt.dev Accessed: 2024-03-06.

[17] Martin Erwig and Eric Walkingshaw. 2012. Semantics-driven DSL design. Formal and Practical Aspects of Domain-

Speci�c Languages: Recent Developments 1 (01 2012), 56–80. https://doi.org/10.4018/978-1-4666-2092-6.ch003

[18] Fastmod. 2024. fastmod. Meta Inc. https://github.com/facebookincubator/fastmod Accessed: 2024-03-06.

[19] Marios Fokaefs, Nikolaos Tsantalis, Eleni Stroulia, and Alexander Chatzigeorgiou. 2011. JDeodorant: Identi�cation and

Application of Extract Class Refactorings. In Proceedings of the 33rd International Conference on Software Engineering

(Waikiki, Honolulu, HI, USA) (ICSE ’11). ACM, New York, NY, USA, 1037–1039. https://doi.org/10.1145/1985793.1985989

[20] Martin Fowler and Matthew Foemmel. 2006. Continuous integration.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 199. Publication date: June 2024.

https://doi.org/10.1109/SCAM.2012.28
https://www.worldcat.org/oclc/12285707
https://swiftpackageindex.com/apple/swift-syntax/509.0.0/documentation/swiftsyntax
https://swiftpackageindex.com/apple/swift-syntax/509.0.0/documentation/swiftsyntax
https://doi.org/10.1145/2568225.2568243
https://ast-grep.github.io
https://doi.org/10.1145/1094811.1094832
https://doi.org/10.1145/1094811.1094832
https://doi.org/10.1145/3338906.3338919
https://doi.org/10.1109/ICSE.2004.1317484
https://thestrangeloop.com/2018/tree-sitter---a-new-parsing-system-for-programming-tools.html
https://tree-sitter.github.io/tree-sitter/
https://detekt.dev
https://doi.org/10.4018/978-1-4666-2092-6.ch003
https://github.com/facebookincubator/fastmod
https://doi.org/10.1145/1985793.1985989

199:24 Ameya Ketkar, Daniel Ramos, Lazaro Clapp, Raj Barik, and Murali Krishna Ramanathan

[21] Lyle Franklin, Alex Gyori, Jan Lahoda, and Danny Dig. 2013. LambdaFicator: From imperative to functional program-

ming through automated refactoring. In 2013 35th International Conference on Software Engineering (ICSE). 1287–1290.

https://doi.org/10.1109/ICSE.2013.6606699

[22] Je�rey E. F. Friedl. 2006. Mastering Regular Expressions (3 ed.). O’Reilly Media, Sebastopol, CA, USA.

[23] Nicu G. Fruja. 2004. The Correctness of the De�nite Assignment Analysis in C#. J. Object Technol. 3, 9 (2004), 29–52.

https://doi.org/10.5381/JOT.2004.3.9.A2

[24] GitHub. 2024. CodeQL: the libraries and queries that power security researchers around the world, as well as code scanning

in GitHub Advanced Security. GitHub, Inc. https://codeql.github.com

[25] Satyajit Gokhale, Alexi Turcotte, and Frank Tip. 2021. Automatic migration from synchronous to asynchronous

JavaScript APIs. Proceedings of the ACM on Programming Languages 5, OOPSLA (2021), 1–27.

[26] gopatch. 2024. go-patch: Structured code di�s and refactors. Uber Technologies, Inc. https://github.com/uber-go/gopatch

GitHub repository.

[27] Georgios Gousios, Martin Pinzger, and Arie van Deursen. 2014. An exploratory study of the pull-based software

development model. In Proc. International Conference on Software Engineering (ICSE), Pankaj Jalote, Lionel C. Briand,

and André van der Hoek (Eds.). ACM, Hyderabad, India, 345–355. https://doi.org/10.1145/2568225.2568260

[28] Hong Jin Kang, Ferdian Thung, Julia Lawall, Gilles Muller, Lingxiao Jiang, and David Lo. 2019. Semantic Patches for

Java Program Transformation (Experience Report). In Proc. European Conference on Object-Oriented Programming,

ECOOP (LIPIcs, Vol. 134), Alastair F. Donaldson (Ed.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, London,

United Kingdom, 22:1–22:27. https://doi.org/10.4230/LIPICS.ECOOP.2019.22

[29] Lennart C. L. Kats and Eelco Visser. 2010. The spoofax language workbench: rules for declarative speci�cation of

languages and IDEs. In Proc. Object-Oriented Programming, Systems, Languages & Applications (OOPSLA), William R.

Cook, Siobhán Clarke, and Martin C. Rinard (Eds.). ACM, Reno/Tahoe, Nevada, USA, 444–463. https://doi.org/10.1145/

1869459.1869497

[30] Ameya Ketkar, Ali Mesbah, Davood Mazinanian, Danny Dig, and Edward Aftandilian. 2019. Type migration in

ultra-large-scale codebases. In Proc. International Conference on Software Engineering (ICSE), Joanne M. Atlee, Tev�k

Bultan, and JonWhittle (Eds.). IEEE / ACM, Montreal, QC, Canada, 1142–1153. https://doi.org/10.1109/ICSE.2019.00117

[31] Ameya Ketkar, Oleg Smirnov, Nikolaos Tsantalis, Danny Dig, and Timofey Bryksin. 2022. Inferring and Applying

Type Changes. In 44th International Conference on Software Engineering (ICSE ’22) (Pittsburgh, United States) (ICSE ’22).

ACM. https://doi.org/10.1145/3510003.3510115

[32] Jongwook Kim, Don S. Batory, and Danny Dig. 2015. Scripting parametric refactorings in Java to retro�t design

patterns. In Proc. International Conference on Software Maintenance and Evolution (ICSME), Rainer Koschke, Jens Krinke,

and Martin P. Robillard (Eds.). IEEE Computer Society, Bremen, Germany, 211–220. https://doi.org/10.1109/ICSM.2015.

7332467

[33] Paul Klint, Tijs van der Storm, and Jurgen J. Vinju. 2009. RASCAL: A Domain Speci�c Language for Source Code

Analysis and Manipulation. In Proc. International Working Conference on Source Code Analysis and Manipulation. IEEE

Computer Society, Edmonton, Alberta, Canada, 168–177. https://doi.org/10.1109/SCAM.2009.28

[34] James Koppel, Varot Premtoon, and Armando Solar-Lezama. 2018. One tool, many languages: language-parametric

transformation with incremental parametric syntax. Proceedings of the ACM on Programming Languages 2, OOPSLA

(2018), 1–28.

[35] Julia Lawall and Gilles Muller. 2018. Coccinelle: 10 Years of Automated Evolution in the Linux Kernel. In USENIX

Annual Technical Conference, Haryadi S. Gunawi and Benjamin C. Reed (Eds.). USENIX Association, Boston, MA, USA,

601–614. https://www.usenix.org/conference/atc18/presentation/lawall

[36] Josh Levenberg. 2016. Why Google stores billions of lines of code in a single repository. Commun. ACM 59, 7 (2016),

78–87. https://doi.org/10.1145/2854146

[37] Na Meng, Miryung Kim, and Kathryn S. McKinley. 2013. LASE: locating and applying systematic edits by learning from

examples. In Proc. International Conference on Software Engineering (ICSE), David Notkin, Betty H. C. Cheng, and Klaus

Pohl (Eds.). IEEE Computer Society, San Francisco, CA, USA, 502–511. https://doi.org/10.1109/ICSE.2013.6606596

[38] Meta. 2024. Build faster with Buck2: Our open source build system. (April 2024). https://engineering.fb.com/2023/04/

06/open-source/buck2-open-source-large-scale-build-system/ Accessed: 2023-11-14.

[39] Microsoft. 2024. Language Server Protocol. https://microsoft.github.io/language-server-protocol/

[40] Anders Miltner, Sumit Gulwani, Vu Le, Alan Leung, Arjun Radhakrishna, Gustavo Soares, Ashish Tiwari, and Abhishek

Udupa. 2019. On the Fly Synthesis of Edit Suggestions. Proc. ACM Program. Lang. 3, OOPSLA, Article 143 (oct 2019),

29 pages. https://doi.org/10.1145/3360569

[41] Moderne. 2024. OpenRewrite: Semantic code search and transformation tool. Moderne Inc. https://docs.openrewrite.org

Accessed: 2024-03-06.

[42] Ansong Ni, Daniel Ramos, Aidan Z. H. Yang, Inês Lynce, Vasco M. Manquinho, Ruben Martins, and Claire Le Goues.

2021. SOAR: A Synthesis Approach for Data Science API Refactoring. In Proc. International Conference on Software

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 199. Publication date: June 2024.

https://doi.org/10.1109/ICSE.2013.6606699
https://doi.org/10.5381/JOT.2004.3.9.A2
https://codeql.github.com
https://github.com/uber-go/gopatch
https://doi.org/10.1145/2568225.2568260
https://doi.org/10.4230/LIPICS.ECOOP.2019.22
https://doi.org/10.1145/1869459.1869497
https://doi.org/10.1145/1869459.1869497
https://doi.org/10.1109/ICSE.2019.00117
https://doi.org/10.1145/3510003.3510115
https://doi.org/10.1109/ICSM.2015.7332467
https://doi.org/10.1109/ICSM.2015.7332467
https://doi.org/10.1109/SCAM.2009.28
https://www.usenix.org/conference/atc18/presentation/lawall
https://doi.org/10.1145/2854146
https://doi.org/10.1109/ICSE.2013.6606596
https://engineering.fb.com/2023/04/06/open-source/buck2-open-source-large-scale-build-system/
https://engineering.fb.com/2023/04/06/open-source/buck2-open-source-large-scale-build-system/
https://microsoft.github.io/language-server-protocol/
https://doi.org/10.1145/3360569
https://docs.openrewrite.org

A Lightweight Polyglot Code Transformation Language 199:25

Engineering (ICSE). IEEE, Madrid, Spain, 112–124.

[43] Online. 2024. ErrorProne ComplexBooleanConstant. Available: https://errorprone.info/bugpattern/UnusedMethod.

[44] Online. 2024. ErrorProne ComplexBooleanConstant. Available: https://errorprone.info/bugpattern/

ComplexBooleanConstant.

[45] Online. 2024. Fix CWE-338 with SecureRandom. Available: https://docs.openrewrite.org/recipes/java/security/�xcwe338.

[46] Online. 2024. Loggers should be named for their enclosing classes. Available: https://docs.openrewrite.org/recipes/java/

logging/slf4j/loggersnamedforenclosingclass.

[47] Online. 2024. Open Rewrite Recipes. Available: https://docs.openrewrite.org/concepts-explanations/recipes.

[48] Online. 2024. Use secure temporary �le creation. Available: https://docs.openrewrite.org/recipes/java/security/

securetemp�lecreation.

[49] OpenAI. 2024. GPT-4 Technical Report. OpenAI Inc. Available online: https://ar5iv.org/abs/2303.08774 [Accessed:

2024-03-06.

[50] Rick Ossendrijver, Stephan Schroevers, and Clemens Grelck. 2022. Towards Automated Library Migrations with

Error Prone and Refaster (SAC ’22). Association for Computing Machinery, New York, NY, USA, 1598–1606. https:

//doi.org/10.1145/3477314.3507153

[51] Md Tajmilur Rahman, Louis-Philippe Querel, Peter C. Rigby, and Bram Adams. 2016. Feature toggles: practitioner

practices and a case study. In Proc. International Conference on Mining Software Repositories (MSR), Miryung Kim,

Romain Robbes, and Christian Bird (Eds.). ACM, Austin, TX, USA, 201–211. https://doi.org/10.1145/2901739.2901745

[52] Md Tajmilur Rahman, Peter C. Rigby, and Emad Shihab. 2019. The modular and feature toggle architectures of Google

Chrome. Springer Empirical Software Engineering (ESE) 24, 2 (2019), 826–853. https://doi.org/10.1007/S10664-018-9639-0

[53] Murali Krishna Ramanathan, Lazaro Clapp, Rajkishore Barik, and Manu Sridharan. 2020. Piranha: Reducing feature

�ag debt at Uber. In Proc. International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP),

Gregg Rothermel and Doo-Hwan Bae (Eds.). ACM, Seoul, South Korea, 221–230.

[54] Daniel Ramos, Hailie Mitchell, Inês Lynce, Vasco M. Manquinho, Ruben Martins, and Claire Le Goues. 2023. MELT:

Mining E�ective Lightweight Transformations from Pull Requests. Proc. International Conference on Automated

Software Engineering (ASE) (2023). https://doi.org/10.48550/arXiv.2308.14687

[55] J Saldana. 2009. The coding manual for qualitative researchers. https://doi.org/10.1108/QROM-08-2016-1408

[56] Yiming Tang, Ra� Khatchadourian, Mehdi Bagherzadeh, and Syed Ahmed. 2018. Towards Safe Refactoring for

Intelligent Parallelization of Java 8 Streams. In International Conference on Software Engineering: Companion Proceedings

(Gothenburg, Sweden) (ICSE ’18). ACM/IEEE, ACM, New York, NY, USA, 206–207. https://doi.org/10.1145/3183440.

3195098

[57] Uber. 2024. PolyglotPiranha: A �exible multilingual framework for chaining interdependent structural search/replace

rules. https://github.com/uber/piranha. Accessed: 2024-03-28.

[58] Rijnard van Tonder and Claire Le Goues. 2019. Lightweight Multi-Language Syntax Transformation with Parser Parser

Combinators. In Proc. ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI). ACM,

Phoenix, AZ, USA, 363–378.

[59] Louis Wasserman. 2013. Scalable, example-based refactorings with refaster. In Proceedings of the 2013 ACM Workshop

on Refactoring Tools, WRT@SPLASH 2013, Indianapolis, IN, USA, October 27, 2013, Emerson R. Murphy-Hill and Max

Schäfer (Eds.). ACM, Indianapolis, IN, USA, 25–28. https://doi.org/10.1145/2541348.2541355

[60] Titus Winters, Tom Manshreck, and Hyrum Wright. 2020. Software engineering at google: Lessons learned from

programming over time. O’Reilly Media, Sebastopol, CA, USA.

[61] Yuhao Zhang, Yasharth Bajpai, Priyanshu Gupta, Ameya Ketkar, Miltiadis Allamanis, Titus Barik, Sumit Gulwani,

Arjun Radhakrishna, Mohammad Raza, Gustavo Soares, and Ashish Tiwari. 2022. Overwatch: learning patterns in

code edit sequences. Proc. ACM Program. Lang. 6, OOPSLA2 (2022), 395–423. https://doi.org/10.1145/3563302

Received 2023-11-16; accepted 2024-03-31

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 199. Publication date: June 2024.

https://errorprone.info/bugpattern/UnusedMethod
https://errorprone.info/bugpattern/ComplexBooleanConstant
https://errorprone.info/bugpattern/ComplexBooleanConstant
https://docs.openrewrite.org/recipes/java/security/fixcwe338
https://docs.openrewrite.org/recipes/java/logging/slf4j/loggersnamedforenclosingclass
https://docs.openrewrite.org/recipes/java/logging/slf4j/loggersnamedforenclosingclass
https://docs.openrewrite.org/concepts-explanations/recipes
https://docs.openrewrite.org/recipes/java/security/securetempfilecreation
https://docs.openrewrite.org/recipes/java/security/securetempfilecreation
https://ar5iv.org/abs/2303.08774
https://doi.org/10.1145/3477314.3507153
https://doi.org/10.1145/3477314.3507153
https://doi.org/10.1145/2901739.2901745
https://doi.org/10.1007/S10664-018-9639-0
https://doi.org/10.48550/arXiv.2308.14687
https://doi.org/10.1108/QROM-08-2016-1408
https://doi.org/10.1145/3183440.3195098
https://doi.org/10.1145/3183440.3195098
https://github.com/uber/piranha
https://doi.org/10.1145/2541348.2541355
https://doi.org/10.1145/3563302

	Abstract
	1 Introduction
	2 Overview
	3 The Code Transformation Language
	3.1 Edge
	3.2 Rule
	3.3 Semantics-Driven Design

	4 Language Runtime
	4.1 Overview
	4.2 Rule Graph Execution

	5 Evaluation
	5.1 RQ1. Expressiveness
	5.2 RQ2. Effectiveness and Usefulness
	5.3 RQ3. Comparison with state-of-the-art code rewrite frameworks

	6 Limitations and Discussion
	7 Future Work
	8 Related Work
	8.1 Declarative code transformation tools
	8.2 Imperative code transformation tools
	8.3 Program Synthesis

	9 Conclusion
	Acknowledgments
	References

