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Abstract

Modern software development heavily relies on third-party libraries and frameworks, which are known to yield

significant productivity gains. Libraries expose functionality through Application Programming Interfaces

(APIs). Although stable API selection is desirable, it is often not possible, as software must adapt to new

technical requirements or shifts in stakeholder or market demands. Therefore, as libraries evolve, clients

may need to migrate APIs to adapt to these changes.

The task of adapting APIs to accommodate non-functional changes is a form of software refactoring, a

crucial practice in software engineering. Refactoring entails modifying code to improve its quality and re-

duce complexity. However, refactoring is typically labor-intensive and prone to errors. The complexity of API

refactoring has spurred numerous research efforts towards automating this task. A widely-used method for

automating API refactoring is to generate match-replace rules by mining vast amounts of data from client

projects of the libraries, sourced from collaborative coding platforms like GitHub. However, a significant chal-

lenge with mining approaches is their limited effectiveness due to reliance on data from clients that have

already undergone refactoring, which is often scarce.

In this thesis, we present novel methods for automated API refactoring that do not rely on extensive train-

ing data or specific refactoring examples from client projects. In particular, we explore three alternative data

sources. First, we use API documentation to discover API mappings, which we use to both generate migration

rules and as a heuristic to guide the migration process. Specifically, the API mappings are used as an heuristic

to guide a program synthesis approach to migrate client code effectively and reliably. Second, we use the API

development process, particularly library pull requests, to learn API migration rules for addressing breaking

changes. Our core idea is that if a library changes functionality, its tests and internal usages likely change as

well, providing a rich source of data for generating migration rules. Third, we exploit natural language, as

software is enriched with an abundance of natural language data including commit messages, issue reports,

and comments. We use this unstructured data to test equivalence between API usages by synthesizing pairs

of code examples in the source and target libraries. Our goal is to then abstract these code examples to

generate broadly applicable migration scripts.

So far, we have implemented our ideas in three automated refactoring tools. Our tools leverage state-

of-the-art program synthesis and machine learning techniques for establishing API mappings, synthesizing

migration scripts, and migrating client code directly. We evaluated the three tools on real datasets, by migrat-
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ing client programs found on collaborative coding platforms. Our ongoing research aims to automatically

generate training examples from natural language and documentation, which we will then use to generate

migration scripts for libraries where migration pairs do not exist.
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1
Introduction

Contents
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Goal of this work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Evaluation Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Expected Contributions and Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1 Motivation

Modern software development relies heavily on third-party libraries and frameworks. These libraries facili-

tate software reuse [1], allow developers to leverage quality implementations for a desired functionality, and

yield significant productivity benefits [2]. Libraries expose their functionality through Application Program-

ming Interfaces (APIs). APIs serve as contracts between the library developers and its clients [3], providing

functionality through a set of functions and methods, and hide concrete implementation details [4]. [5] Al-

though stable API selection is desirable, the dynamic nature of software often renders it impractical. This

dynamism in software [6] is driven by changing technical requirements and shifts in stakeholder or market

needs [7]. As requirements and libraries evolve, clients may need to migrate APIs to accommodate these
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shifts [7]. Furthermore, APIs themselves might break, become deprecated [8], or become exploitable, posing

severe security risks, thus forcing downstream clients to update their usage accordingly.

The task of changing APIs to accommodate non-functional changes is a specific instance of software refac-

toring, a crucial software engineering practice. Refactoring involves modifying code with the goal of enhanc-

ing its quality and reducing its overall complexity [9]. Broadly, refactoring facilitates new feature develop-

ment [10], assists managing technical debt [11], and prevents codebase decay [12]. Neglecting to refactor

can escalate future costs; for example, the Consortium for Information & Software Quality (CISQ) estimates

the cost to address the accumulated technical debt in the U.S. at approximately $1.31 trillion [13].

However, refactoring is generally labor-intensive and error-prone [14]. Even seemingly straightforward

tasks, like moving between two libraries that provide similar functionality, can be challenging and tricky. For

instance, PyTorch[15] and Tensorflow[16], two of the most popular deep learning libraries, have different con-

ventions regarding the order of values in tensor dimensions, which can lead to subtle bugs during a migration.

Migrating APIs requires significant domain-specific expertise in both the source and target libraries [17]. Fur-

thermore, achieving the desired functionality often extends beyond simple method mappings. Developers

may need to write additional boilerplate code, figure out the correct argument combination in the replace-

ment API, and manage cascading changes like type migrations and removing/adding import statements.

Migration tasks are also difficult as APIs continuously evolve, often rendering prior knowledge obsolete.

The complexity of API refactoring has inspired numerous research efforts towards the automation of this

task. At a high level, the goal is to automatically infer and generalize API refactorings from minimal user/de-

veloper input in order to reapply them on a large scale. These refactorings include migrations, updates from

breaking changes, or handling deprecations. Like in any automation task, the goal is to orchestrate refac-

toring in such a way that user intervention is minimal. However, full automation is hard, and existing tools

typically provide partial support rather than a fully integrated refactoring experience (e.g., [18–22]).

The most common approach to automated API refactoring is to use heuristics or learning algorithms

to establish mappings between APIs and create match-replace rules [23]. The data for these algorithms is

typically sourced from large-scale collaborative coding platforms like GitHub [24]. The data is obtained either

by mining commits from library client projects that have undergone migrations [19, 21, 22], and can also be

supplemented by information from new client projects in the most up-to-date APIs [18].

One significant challenge with these mining approaches is that the effectiveness of the tools is limited by

their reliance on mining data from client projects that have already refactored their APIs. Unfortunately, this

data is scarce. For example, a recent study found that 81.5% of projects maintain outdated dependencies [25].

Additionally, the mining process can only occur after clients begin transitioning between versions, precluding

use shortly after a new version of the library is released [26, 27]. On the other hand, unsupervised learn-

ing methods [28] circumvent the issue of pair-wise data scarcity. However, they require extensive training

data. This would in theory primarily benefit well-established libraries and APIs but, in practice unsupervised
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methods are not as effective. Moreover, they cannot tackle lesser-known libraries and proprietary code.

1.2 Goal of this work

The goal of this work is to develop novel methods for automated API refactoring that do not rely on extensive

training data or pairwise migration examples from downstream client projects of libraries. In particular, we fo-

cus on techniques for two API refactoring tasks: 1. cross-library migrations, and 2. same-library migration

to cope with breaking changes. Our techniques are based on two different approaches:

1. inferring match-replace rules for updating APIs;

2. refactoring the APIs directly using a tool.

We observe that a wealth of high-quality information for automated API refactoring can be sourced from

API documentation, the development processes of the APIs, and other self-contained information in libraries,

along with natural language associated with the API development process.

Thesis Statement

Automated API refactoring can be effectively achieved without relying on extensive pair-wise training data.

By leveraging self-contained data in libraries and leveraging synthesis techniques, we can generate rules

and migrate code to facilitate API refactoring.

Next, we explain the rationale and hypotheses that underlie our proposed approaches.

1.2.1 API Documentation

APIs intended for widespread reuse are often reasonably well-documented [29]. The quality, quantity, and

structure of this documentation can vary widely [30]. However, as code meant to be called and reused by

unrelated client applications, documentation is often key to successful API uptake [30]. High-quality API doc-

umentation usually includes detailed descriptions of each function, method, and class, along with their ex-

pected inputs, outputs, and error conditions [31]. This information can be leveraged for classifying APIs,

finding alternatives, or adapting usage when breaking changes are introduced.

In general, documentation may also contain examples and best practices [31, 32], which can be analyzed

to infer latent properties of the APIs. These properties can then inform automated refactoring tools, ensuring

that the transformation results in a use case aligned with the API’s purpose. Furthermore, modern API doc-

umentation is increasingly enriched with metadata, such as annotations in dynamically typed programming

languages [33]. This metadata can also be leveraged to guide the automated refactoring process.

In the case of breaking API changes, documentation evolves alongside the API itself [34], reflecting changes

and deprecations in API behavior. If the documentation of evolving APIs provides transition examples from
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old usage to new usages, or even natural language descriptions of how to adapt to the changes, then these

can also be leveraged for automated refactoring.

In short, our hypothesis is that we can: 1. leverage API documentation to establish mappings between closely

related APIs and libraries to facilitate API refactoring, 2. use examples and structured information from the docu-

mentation to guide the refactoring process, and 3. leverage metadata to increase the accuracy of the refactoring.

1.2.2 API Development Process

Pull requests have become the de facto standard for software development on collaborative platforms like

GitHub [35, 36]. In this method, a developer first clones the project (i.e., makes a personal copy of the project),

makes changes in their copy, and finally submits these changes to the central repository for review. Pull

requests typically include a title, a natural language description of the proposed changes, how they relate to

project milestones or issues, and a set of commits (i.e., code file changes). These are reviewed by a core group

of maintainers who decide whether to accept, request revisions, or reject the changes.

Pull requests involving API changes are also a rich source of data for mining transformation rules for API

refactoring. Our hypothesis is that by examining pull requests (PRs) submitted to libraries where APIs are

broken, we can identify and extract rules governing these changes. First, we can use tags in PRs to identify

API changes by searching for labels such as "deprecated", "breaking change", and "API change". If the PR cor-

responds to such an API change, we can use self-contained commits in the PRs to learn code transformation

rules for updating client code. The internal updates to the library source code resulting from the API change

(such as test case changes) serve as the ground truth for mining rules and adapting client code.

1.2.3 Natural Language

Software development extends beyond coding and is enriched by a plethora of natural language data, such

as commit messages, issue reports, discussions, and code comments [37]. This unstructured data can also

be crucial in informing and guiding the development of automated API migration tools.

Developers frequently use natural language to describe intended changes or updates to APIs, whether in

documentation or issue trackers [38]. Leveraging general-purpose large language models [39] is a promising

avenue for transforming this unstructured data into structured data for our techniques. We seek to explore

natural language-to-code techniques to create API refactoring rules directly from language (rule synthesis).

We also aim to use natural language comments and descriptions in pull requests to generate code examples,

which can be used to mine and generalized into refactoring rules.

During the automated refactoring process, error messages from the compiler can also be used in pin-

pointing issues, and suggesting how to fix them. These messages often contain details about issues in API

calls or usage. By interpreting these error messages, we can better align with the correct API usage.
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1.2.4 Program Synthesis

So far, our observations have highlighted alternative data sources that can be leveraged for automated API

migration. In this section, we discuss how we will leverage them towards automated API refactoring. Specifi-

cally, in our proposed work, we frame automated API refactoring as a program synthesis problem.

Program synthesis is a research area focused on automatically generating programs that comply with

a given specification, such as natural language or input-output examples [40]. In our work, we frame API

refactoring as a synthesis problem in two distinct manners:

1. Direct Migration using Synthesis: We approach the API refactoring problem by synthesizing programs

directly. Specifically, given a program that uses library 𝐴, our goal is to generate an equivalent program

that replaces all usages of 𝐴 with an alternative library 𝐵. Unlike the general setup in synthesis (such

as programming-by-example [40]), our specification is complete. That is, our source program fully de-

scribes the intended behavior of the program to be synthesized.

2. Script-based Migration Synthesis: At times, it is desirable to synthesize a script for migration, rather

than directly migrate the code. In these cases, our goal is to generate a script that can automatically

migrate programs from 𝐴 to 𝐵. In our work, we represent our scripts using declarative languages for

matching and replacing code.

1.3 Evaluation Methodology

We test our hypotheses by developing automated API refactoring methods based upon them. The evaluation

of each method is as follows.

1.3.1 Metrics

To measure the effectiveness and efficiency of our techniques, we use the following metrics:

1. Refactoring Accuracy: This metric evaluates the quality of the refactorings produced by our tools.

Specifically, for fixing breaking changes, we upgrade client projects to a new library version (e.g., 𝑣1

to 𝑣2) and run their tests post-upgrade both before and after refactoring. In the context of library

migrations, we migrate the code and run the same test suite where feasible. If this is not possible, we

use automatically generated tests.

2. Runtime Performance: We assess the runtime taken by our tools during refactoring. We also measure

the impact of each component of our proposed approaches in ablation studies. Finally, we compare our

tools to state-of-the-art alternatives where such comparison is possible and fair.

3. Refactoring Rule Accuracy: Validating refactoring rules is hard, as ground truth for the rule typically

does not exist, and there are infinitely many programs that could spur different behaviors from the rule.
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Thus, instead, we manually validate the quality of the match-replace rules generated by our proposed

approach. Our manual analyses always take into consideration the context and the intent of the rule.

For rules to fix breaking changes, we examine documentation, developer comments, and online dis-

cussions to determine if our rule for addressing the breaking change preserves the original behavior.

We use inter-rater agreement [41] as outlined by best practices for all our manual validations.

1.3.2 Benchmark Dataset

The benchmarks for each technique are chosen based on the task at hand. For evaluating refactoring accuracy

and efficiency, our benchmarks consist of programs written in popular languages like python or java, each

accompanied by a set of test cases. The benchmarks feature outdated API usages that require refactoring.

In some cases, they are supplemented with automatically generated test cases. Tests play a crucial role in

ensuring that the program’s behavior remains consistent before and after the refactoring.

For assessing rule accuracy, we select relevant migrations and breaking changes from open-source li-

braries, particularly those where the author possesses the most expertise. We infer and validate behavior-

preserving refactoring rules. The rule accuracy validation is done by manually checking if match-replace rules

are generally applicable, considering existing documentation, developer discussions, and other publicly avail-

able information.

1.4 Expected Contributions and Outline

We propose several techniques and prototype tools based on our ideas:

• Synthesis-based Refactoring Using Documentation and Error Messages (Chapter 3): A novel tech-

nique, named SOAR, that uses readily available API documentation to learn API representations and

migrate code between libraries (Chapter 3). SOAR uses program synthesis to automatically compute

the correct configuration of arguments and necessary glue code for API invocation. It also integrates

the interpreter’s error messages to refine the search space during refactoring. This work was published

in the proceedings of the International Conference on Software Engineering 2021 [42].

• Mining API Migration Rules from Pull Requests (Chapter 4): A novel technique, named MELT, that

generates lightweight API refactoring rules for fixing breaking changes by using data from the pull

requests that broke the API. The data is used in two ways: first, natural language descriptions and code

changes in pull requests are used to generate adaptation examples. The examples are then tested and

generalized into API transformation rules. Secondly, code changes to test cases within the library that

were adapted to cope with the breaking change are also used to mine rules. This work was published

in the proceedings of the International Conference on Automated Software Engineering 2023 [43].
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• A Multi-Language Code Transformation Tool (Chapter 5): We develop a new declarative domain-

specific language (DSL) for expressing interdependent multi-language code transformations . The lan-

guage aims to make lightweight transformation tools more expressive for complex refactorings. The

language takes inspiration from other lightweight match-replace languages and enhances their design.

We demonstrate the language and toolset effectiveness and expressiveness in an industrial setting, as

well as its ease of use. This work was just accepted at the International Conference on Programming

Language Design and Implementation 2024 [5].

• Generating Refactoring Programs from Natural Language (Planned – Chapter 6): Our proposed

work aims to generate refactoring scripts to migrate complex API usages. Our goal is extend the MELT

approach to be able to tackle the types of migrations discussed in Chapter 5.

This work is a compilation of the papers discussed above.
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2
Research Background and Related Work

Contents
2.1 What are Application Programming Interfaces? . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 What is Refactoring, and Why is it Important? . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Automated Techniques for API Refactoring . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

In this chapter, we delve into two fundamental concepts to this work and to modern software development

in general: Application Programming Interfaces (APIs) and refactoring. We start by offering a concise overview

of APIs, discussing their role in creating re-usable software systems (Section 2.1). Following this, we overview

the practice of refactoring in software engineering, a key process for enhancing code quality (Section 2.2).

The chapter concludes with an overview of how researchers have developed automated approaches for API

refactoring, highlighting trends and gaps in this area (Section 2.3).

2.1 What are Application Programming Interfaces?

Developers oftentimes build software meant for use by other software, rather than directly by end-users.

An important consideration in such cases is to decide which functionality is intended to be provided and the

abstractions to be exposed to developer clients. According to design best practices [44], there must be a
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clear separation between the software’s functional requirements (what it does) and its concrete implemen-

tation (how it does it). This separation is critical to ensure that clients are not burdened with irrelevant im-

plementation details. The functionalities made available to clients are collectively known as an Application

Programming Interface, or API.

The term API has been loosely used to describe a wide array of concepts, interpreted differently across

technical domains [45]. Indeed, there is considerable debate about its meaning and usage [46]. However, in

this work, we use the term ’API’ to denote a software API, typically exposed and implemented as a library with

a collection of classes, functions, or methods (depending on the programming language) that expose certain

functionalities for other programmers to use. A single API can have multiple implementations (or none, if

abstract) in the form of bindings that share the same programming interface. For example, because Scala

and Java compile to compatible bytecode, Scala programs may use APIs implemented in Java.

Since APIs are intended for reuse, they often come with documentation, describing classes, methods,

and sometimes typical usage cases, design rationales, and performance discussions [47, 48]. Regardless of

what constitutes a particular API, the important underlying concept is that an API is a well-defined interface

providing specific services to other software components.

APIs are the cornerstone of modern software engineering. Modern applications are often built on top of

many APIs, which are also built upon other APIs. This approach yields significant productivity gains, allow-

ing developers to focus on their specific tasks. Various research studies have investigated API design [49],

evolution [50], and usability [51].

2.2 What is Refactoring, and Why is it Important?

Real-world software is constantly evolving, often driven by the need for enhancements and changes to meet

new requirements [52]. As software adapts to additional functionality, code complexity tends to increase,

and the software drifts from its original design. This issue is further exacerbated when developers prioritize

short-term fixes over comprehensive, long-term solutions. While these immediate solutions might initially

appear cost-effective, they frequently result in significant, hidden long-term maintenance costs. Such esca-

lating complexity eventually leads to a gradual deterioration, a phenomenon known as technical debt [11]. The

longer technical debt remains unaddressed, the more ’interest’ it accrues, making it increasingly challenging

to develop new features and maintain existing code.

Providing accurate estimates for software maintenance spending is challenging, but it is widely accepted

that the expenses related to software maintenance — including bug fixes, design enhancements, and code

restructuring — vastly exceed the cost of actual new feature development. Complex code often results in

extended development periods, subtle bugs, and increased cost of change [53]. Additionally, according to

Minelli et al. [54], developers allocate approximately 70% of their time to understanding code rather than
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coding. Therefore, a well-thought-out design and adherence to best practices are crucial to reduce this ef-

fort [55].

One way to tackle this spiral of complexity is through a software engineering practice known as refactor-

ing. Refactoring is defined as the process of changing a software system in such a way that it does not alter the

external behavior of the code, yet improves its internal structure [9]. Sometimes, refactoring is colloquially used

in a more generic and less rigorous manner than this definition suggests, and indeed, some authors argue

that refactoring is not always behavior-preserving [56]. However, in this document, we are primarily con-

cerned with behavior-preserving refactorings, aiming to improve maintainability without external changes,

as refactorings that do not preserve behavior have limited potential for full automation.

In general, a refactoring is parameterized as a sequence of program transformations applied either man-

ually or automatically with a tool, along with a specification that guarantees behavior preservation if satisfied.

In modern software development, tests are the most widely adopted form of specification. Formally, we run

a given program on a set of predefined inputs and then check if the observed output matches the expected

output. Although refactoring can be applied in different paradigms, we focus on imperative programming

languages. Many forms of refactoring also exist, like renaming variables, moving methods, migrating across

languages [57], or refactoring APIs [58] (the primary focus of this work).

There are two primary API refactoring tasks of interest: library migration and library updates. A library

migration involves replacing a third-party library (the source library) in a project with an alternative one (the

target library). In the case of a library update, the task is to replace an old version with its newer iteration.

Numerous factors can drive such migrations or updates, including (but not limited to) the introduction of

new features, performance enhancements, improved community support and documentation, compatibility

issues, license changes or restrictions, and deprecation, among others.

2.3 Automated Techniques for API Refactoring

The challenges associated with refactoring have motivated multiple research efforts in automation. In this

section, we provide a brief overview of key ideas and trends in automated API refactoring.

2.3.1 Code Transformation Languages

As discussed in Section 2.2, a refactoring is parameterized as a sequence of program transformations. For

large-scale, automated refactoring, it is necessary to represent this sequence of transformations in a lan-

guage. Here, we give a brief summary of code transformation languages proposed over the years.

Code transformation languages and tool sets are often declarative. In general, these tools work with

find-replace rules; each rule has two parts: (1) a template for selecting the source code to be transformed,

(2) and the replacement template shows how the matched code should be transformed. Declarative match-
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replace tool sets can either be language-specific or language-agnostic. Language-specific tool sets include

Coccinelle [59], widely adopted in the Linux community for C, and Refaster [60], used at Google for Java.

Variants of these tools include Coccinelle4J [61] for Java and GoPatch [62] for Go. Since these tools are

language-specific, they often leverage existing compiler infrastructure and use semantic information, such

as control flow, to enable precise transformations. While these tools provide similar languages, they leverage

different aspects of each language. However, significant efforts are required to introduce and maintain new

language front-ends for these tools.

In contrast, lightweight tools do not depend on compiler infrastructure and are thus language-agnostic,

akin to regular expressions. Some examples include Comby [23] and ast-grep [63]. However, lightweight

tools generally have a limited understanding of code context and semantics, making it challenging to express

complex code transformations.

2.3.2 Learning API Transformations

2.3.2.A Mining Migration Scripts

For automating API refactoring, it is necessary to source refactoring rules automatically from a reliable origin.

Prior research has primarily focused on mining API clients to learn these rules. The key idea behind these

approaches is to locate API clients on collaborative online coding platforms such as GitHub and analyze their

version history (i.e., commits). The goal is then to identify commits where clients have either migrated to a

newer API version or updated their API usage. This data is aggregated and used to mine refactoring rules

using various algorithms.

The majority of approaches to mining rules have primarily targeted APIs in object-oriented languages

(specifically, Java and C#). Examples include A3 [19] and Meditor [21]. While these tools use varied techniques

for the mining process and adopt different internal representations for refactoring, their approaches are

based on similar ideas. Some tools represent refactorings as sequences of edits on structure rather than as

match-replace rules. For example, APIFix [18] mines transition examples from both previously-migrated and

new client repositories to learn refactoring actions. APIFix represents code transformation as a sequence

of tree edits using Refazer’s [64] program synthesis engine, rather than using regular match-replace rules.

Abstract Syntax Tree (AST) edits are typically more challenging to understand [65].

APIMigrator [22] and AppEvolve [20] also mine client repositories for commit data to generate refac-

toring rules and apply them to clients. A key difference in these tools compared to prior work is that they

also leverage differential testing techniques [66] to validate edits on clients, rather than only checking the

syntactical validity of transformed code.

A major issue with existing mining approaches is that data for mining is often very scarce, which heavily

limits the applicability and usefulness of these approaches. A recent study by Kula et al. found out that 81.5%

of projects keep outdated dependencies. Additionally, the mining process can only occur after clients begin
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transitioning between versions, precluding use shortly after a new version of the library is released [26, 27].

2.3.2.B Mining API Mappings

A different line of work focuses on learning API mappings, rather than refactoring rules, to offer partial

automation and assist developers with manual refactoring. For example, Semdiff [68] recommends API

changes to developers by presenting a ranking of potential replacements. Other approaches mine statis-

tical API recommendations include ARES [69], PART [70], Sysedminer [71], MAM [57], Staminer [72], and

Java2CS [73]. This research primarily targets cross-language migrations, with most tools mining pairs of bilin-

gual projects to learn API mappings between two languages. However, bilingual projects are increasingly rare.

DeepAM [28] takes a different approach, using deep learning to find a common representation. It learns se-

mantic representations using embeddings, based on surrounding API context and comments, to understand

APIs in multiple languages.

2.3.2.C Example-based approaches

Instead of taking existing examples (e.g., from GitHub) to learn transformation rules, researchers have pro-

posed refactoring-by-example techniques. These approaches infer the transformations as a program in a low-

level DSL from input-output examples. The idea is for the developer to provide an example which is then

generalized, rather than mining from client projects. For example, LASE [74] and Bluepencil [75] infer an

edit script from two example edits. More recently, Overwatch [76] integrates refactoring by example ideas

into core IDE infrastructure to learn edit sequences, not just from input-output examples but also from inter-

mediate steps (i.e., using temporal context). Catchup! [77] follows a different approach. Instead of asking

users for examples, it asks library developers to record refactoring operations. The idea is to provide a patch

alongside the new library version so that clients can automatically update their dependencies.
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3
Synthesis-Driven Refactoring with

Documentation and Error Messages

Contents
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In this chapter, I discuss my completed and published work on a “Synthesis Approach for Open Source API

Refactoring” (SOAR) [42]. In this work, we leverage: 1. API documentation (including metadata), and 2. inter-

preter error messages to automatically refactor APIs. Unlike previous approaches, SOAR does not require any

pairwise training data to find API mappings. Moreover, SOAR migrates code using a program synthesis based

approach rather than using refactoring rules. This makes SOARmore powerful and expressive, as some trans-

formations cannot be expressed as match-replace rules. SOAR is one the first end-to-end, synthesis-based

approaches to API refactoring requiring minimal to no training data. In the evaluation, we show that it can
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1     import tensorflow.keras.layers as tf

2     . . . .
41                                                           
42 self.conv1 = tf.Conv2D(

filters=32, 
kernel_size=3, 
strides=(2, 2))

43  . . . .
48  self.dense1 = tf.Dense(10)

49  self.dense2 = tf.Dense(1568)

50  . . . .
55  self.deconv1 = tf.Conv2DTranspose(

filters=64, 

kernel_size=3, 

strides=2)

56  . . . .
63  self.relu6 = tf.ReLU()

1     import torch

2     . . . .
39                                                           
40 self.var0 = torch.nn.Conv2d(

in_channels=32, 
out_channels=32,
kernel_size=(3, 3),
stride=(2, 2),
padding=(0, 0))

41  . . . .
51  self.var5 = torch.nn.Linear(64 , 10)

52  self.var6 = torch.nn.Linear(10, 1568)

53  . . . .
57  self.var8 = lambda t: t.permute(0, 3, 1, 2)

58  self.var9 = torch.nn.ConvTranspose2d(

in_channels=32, 

out_channels=64, 

kernel_size=(3, 3),

stride=(2, 2),

padding=(0, 0)) 

59  . . . .
62  self.var13 = torch.nn.ReLU()

A

B

C

D

Figure 3.1: An example of howSOAR refactors a program written withTensorFlow (left) to usingPyTorch (right). Note

that the whole program consists of 15 APIs calls to TensorFlow, though we only show four blocks of them

(i.e., A, B, C and D) for brevity. SOAR can migrate the full program in 161 seconds.

successfully migrate functions / programs of up to 45 lines within reasonable time frames.

3.1 Motivating Example

We illustrate some of the difficulties of manual API refactoring via example. Consider the code snippet de-

picted on the left-hand side of Figure 3.1. This code snippets features an autoencoder, a specific type of neural

network, developed using the TensorFlow API. Our objective is to transition this code to the PyTorch API

as shown in the right-hand side. For context, an autoencoder is an encoder-decoder style neural network

designed for data compression. It is trained to transform data into a more compact form (i.e.,, a latent rep-

resentation), and then reconstruct the original data as accurately as possible.

The example in Figure 3.1 shows only a portion of the program, for didactic purposes. To build the first

layer of the encoder, it calls the Conv2D function, creating a convolution layer for 2D images. After further

(elided) activation and convolution layers, it calls Dense to output a latent representation of the input image.

Decoding this output follows roughly the same procedure as the encoding, but using Conv2DTranspose

instead of Conv2D. The function ReLu appears in both the encoder (not shown) and decoder, is used to ensure

non-linearity of the neural network.
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API Matching 
Model

Program 
Synthesis

…

…

Python 
Interpreter

… …

torch.nn.Linear(#0,  #1,  #2,  #3)

self.dense1 = tf.Dense(10) torch.to_dense(#0) torch.nn.Linear(in_features=10, 
out_features =-1)

AssertionError: “out_features” 
must be a positive number.

Error Message 
Understanding

…

torch.nn.Linear: #1 > 0

y = self.dense1.forward(x)
assert_close(y, expected_y) 

self.dense1 = torch.nn.Linear(
in_features=64, 
out_features=10)

Source API Call and Testcase Target API Sketches Refactor Candidates Error Messages SMT Constraints Refactored API Call

Source 
Program

One API Call 
Refactored

Fully 
Refactored 

Program

Figure 3.2: Overview of SOAR’s architecture.

The example in Figure 3.1 illustrates several of the core challenges in refactoring open-source APIs, as well

as opportunities to inform an automated approach. First, the names of function calls implementing similar

functionality may be very similar or even identical (such as those in blocks A, C, and D), or completely different

(e.g., Dense versus Linear in block B). If a developer were performing this migration manually, they might

reference the API documentation. For example, TensorFlow documentation describes the Conv2D class as a

2D convolution layer (e.g., spatial convolution over images)” [16]; the corresponding PyTorch documentation

for the Conv2d call describes it similarly, as a 2D convolution over an input signal composed of several input

planes” [78]. Here, the function names map well, but when this does not happen, the documentation should

at least provide analogous descriptions for functions offering equivalent functionality.

Identifying the appropriate function is only part of the challenge in API refactoring. Even when the correct

function is known, APIs mapped for the same functionality may have parameters with different names, types,

conventions, and default values. This is evident in the majority of calls in our example (as seen in blocks A, B,

and C). For instance, theConv2D functions in both libraries take different parameters. There is some overlap —

both include kernel_size, and stride corresponds with strides— yet they may expect different types (for

example, kernel_size takes an integer in TensorFlow but a tuple in PyTorch). In some cases, new arguments

must be inferred, varying based on context. For example, the first parameter of theLinearAPI calls in block B,

mapped from Dense, require an extra argument to be dynamically computed. This makes it infeasible to write

a simple match-replace rule for Dense to Linear mapping, as arguments must be dynamically generated.

Finally, there are instances where no single function in the target API matches the semantics of a call from the

source API, necessitating a one-to-many mapping, as illustrated in the conversion of the Conv2DTranspose

call in block C.

3.2 SOAR’s Algorithm

This section describes SOAR, our approach for automatic API migration. We begin with an overview of the

method (Section 3.2.1) before providing more detail on individual components (Section 3.2.2; 3.2.3; 3.2.5).
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Algorithm 1 SOAR(I,S,T , C)
Input: I: existing program, S: source library, T : target library, C: test cases

Output: O: refactored program

1: ®𝑟 : API mapping = mapAPI(T ,S)

2: O = {}

3: for each 𝑙 ∈ I do

4: O = O ∪ refactorLine(𝑙,T , C, ®𝑟)

5: end for

Figure 3.3: Description of the program parameters in torch.nn.Conv2d documentation [78].

3.2.1 Overview

Figure 3.2 shows an overview of the SOAR architecture, while Algorithm 1 provides an algorithmic view. SOAR

takes as input a program I consisting of a sequence of API calls from a source library S, the source (S) and

target (T ) libraries and their corresponding documention, and a set of existing test cases (C). Since the user

wants to refactor code from S to T , we assume that the user already has test cases for I that can be reused

to check if the refactored code (O) has the same functional behavior has the original code (I). Refactoring

proceeds one line at a time in I, finding/constructing an equivalent snippet of code (composed by one or

more lines) that uses APIs of the target library T ; the composition of all these translated lines comprises the

output O.

For each API call in the input program, the first problem either a developer or a tool must face is to identify

methods in the target API that implement the same functionality (i.e., for a given set of input parameters, the

target API call must generate the same output). SOAR uses an API matching model to identify target API calls.

This model is built using NLP techniques that analyze the provided API documentation for each call, and

provides a mapping (®𝑟 in Algorithm 1) that computes the similarity between each target API function and
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each potential source API function. SOAR uses this to find the most likely replacement methods in the target

API for each source API call in the input program. We provide additional detail in Section 3.2.2.

Given a potential match call in the target API, the next step is to determine how to call it, in terms of

providing the correct parameters, in the correct order, of the correct type. SOAR uses program synthesis to

automatically write the refactored API call, using the provided test cases to define the expected behavior of

the synthesized code and its constituent parts. The synthesis process can be assisted with additional auto-

mated analysis of API documentation, which often provides key information about each parameter, namely

(1) whether it is required or optional, (2) its type, (3) its default value (if applicable), and (4) constraints between

arguments, input and output (e.g., input and output tensor shapes). Figure 3.3 shows a snippet of the descrip-

tions of all parameters for torch.nn.Conv2d. For example, the parameter stride is optional; it takes type

int or tuple, and its default value is 1. Analysis of this documentation can produce a specification constraint

for the stride parameter, assisting the program synthesis task. Section 3.2.3 describes the synthesis step.

Given a potential rewrite in the target API, a natural step for a developer would be to run the refactored

code on test inputs. Unsuccessful runs can be quite informative, because many APIs (especially in the deep

learning and data science domains) provide error messages that can be very helpful for debugging. SOAR

simulates the manual debugging process by first adapting the input whole-program test cases to test par-

tially refactored code, and then extracting both syntactic and semantic information from any error messages

observed when running them. SOAR uses this information to add new constraints to the iterative synthesis

process (Section 3.2.5).

After migrating all calls in the source API to the target API such that all input tests pass, SOAR outputs a

fully refactored program. Subsequent sections provide additional detail on the previously described steps.

3.2.2 API Matching using Documentation

The first step in migrating a call in a source API is to identify candidate replacement calls in the target API with

similar semantics. SOAR’s API matching model ahcieves by analyzing the prose documentation associated

with the APIs, rather than mining client projects.

At a high level, the model embeds each API method call in a source and target library into the same con-

tinuous high-dimensional space, and then computes similarity between two calls in terms of the distance

between them in that space. We explored two information retrieval approach to obtain latent API represen-

tation: TF-IDF (term frequency – inverse document frequency) [79] and pretrained word embeddings [80].

TF-IDF. TF-IDF finds the most representative words in a sentence (which are usually different from the most

frequent ones). The core idea is to discard irrelevant words when computing the API representation. For

example, words like “the" or “this" convey very little information about an API.

For our TF-IDF model, we first derive a bag-of-words representation xi from a description of an API call

after some stemming of the words with the Snowball Stemmer [81]. xi = [𝑥𝑖1, 𝑥𝑖2, ..., 𝑥𝑖𝑛] where 𝑥𝑖𝑗 denotes
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the frequency with which word 𝑥 𝑗 appeared in the sentence xi, and 𝑛 is the size of the vocabulary from the

descriptions of all APIs considered. A TF-IDF representation of the call is computed as Equation (3.1):

TF-IDF(xi) =
[

𝑥𝑖1∑𝑚
𝑡=0 𝑥

𝑡
1
,

𝑥𝑖2 𝑦∑𝑚
𝑡=0 𝑥

𝑡
2
, ·, 𝑥𝑖𝑛∑𝑚

𝑡=0 𝑥
𝑡
𝑛

]
(3.1)

However, the major downside of TF-IDF is that it does not encode the similarities between words them-

selves. For example, consider two hypothetical call descriptions: (1) Remove the last item of the collection,

and (2) Delete one element from the end of the list. They are semantically similar but since they have minimal

overlapping words, a TF-IDF representation method would not recognize these two API calls as similar.

Tfidf-GloVe. We can fix this problem by adding the use of pretrained word embeddings. Specifically, we

use the GloVe embedding [80], which is trained on a very large natural language corpus and learns to embed

similar words closer in the embedding space. Since the paper was published many other embeddings models

have emerged but they are fundamentally built using the same ideas.

To obtain sentence embeddings from individual words, we perform a weighted average of the word em-

beddings and use the TF-IDF scores of individual words as weight factors. It is a simple yet effective method

to obtain sentence embedding for downstream tasks, as noted by previous work [82, 83]. This is shown in

detail as Equation 3.2, where wj is the vector encoding the GloVe embedding of word 𝑥 𝑗 :

Embedding(xi) =
𝑛∑︁
𝑖= 𝑗

𝑥𝑖𝑗 · wj∑𝑚
𝑡=0 𝑥

𝑡
𝑗

(3.2)

By including the GloVe embedding, word similarity is preserved; by including the TF-IDF terms, the influ-

ence of embeddings of common words is greatly reduced. However, GloVe is trained with Common Crawl [84]

which contains raw webpages, which is a mismatch from our domain of textual data (i.e., data science and

programming). This causes a lot of OOV (out-of-vocabulary) problems.

API matching. Given the representation of two APIs Rep(x𝑖), Rep(x 𝑗) in the same space Rep(·), we compute

their similarity with cosine distance:

sim(Rep(x𝑖), Rep(x 𝑗)) = Rep(x𝑖) · Rep(x 𝑗)
|Rep(x𝑖) | |Rep(x 𝑗) | (3.3)

For computational efficiency, we pre-compute the similarity matrix between the APIs across the source

and target library. So we will be able to query the most similar API for the synthesizer to synthesize its pa-

rameters on the fly.

3.2.3 Program Synthesis

Instead of crafting match-replace rules using the API mappings, we refactor client code directly using program

synthesis. This allows our refactoring engine to support expressive refactorings. Formally, given input test

cases and an API matching model providing a ranked list ®𝑟 of APIs in the target library, the synthesis model
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Algorithm 2 refactorLine(𝑙,T , C, ®𝑟)
Input: 𝑙: line of code from I, T : target library, C: test cases, ®𝑟: ranked list of API matchings

Output: R: refactored snippet

1: O = {}

2: for each 𝑙′ ∈ ®𝑟 do

3: ®𝑠 = generateSketches(𝑙′,T )

4: for each 𝑠 ∈ ®𝑠 do

5: R = fillSketch(𝑠)

6: if passTests(R, C) then

7: return R

8: end if

9: end for

10: end for

automatically constructs new, equivalent code, of one or more lines, that uses APIs of the target library T .

The refactored program O has the same functionality as input programI, and passes the same set of tests C.

To refactor each line of the existing program I, we use techniques of programming-by-example (PBE)

synthesis [40]. PBE is a common approach for program synthesis, where the synthesizer takes as specification

a set of input-output examples and automatically finds a program that satisfies those examples. In the context

of program refactoring, our examples correspond to the test cases for the existing code. For our experiments

we restrict ourselves to straight-line code where each line returns an object that can be tested. With these

assumptions, we can automatically generate new test cases for each line 𝑘 of program I. This can be done

by using the input of the existing tests, running them, and using the output of line 𝑘 as a new test case for

the program composed by lines 1 to 𝑘.

Our program synthesizer for refactoring of APIs is presented in Algorithm 2 and it is based on two main

ideas: (i) program sketching, and (ii) program enumeration. For each line 𝑙 in program I, we start by enu-

merating a program sketch (i.e., program with holes) using APIs from the target library T (line 3). For each

program sketch, we perform program enumeration on the possible completion of the API parameters (line 5).

For each complete program, we run the test cases for the program up to line 𝑙. If all test cases succeed, then

we found a correct mapping for line 𝑙 between librariesS and T (line 6). Otherwise, we continue until we find

a complete program that passes all test cases.

Program Sketching. Program sketching is a well-known technique for program synthesis [85] where the

programmer provides a sketch of a program and the program synthesizer automatically fills the holes in this

sketch such that it satisfies a given specification. We refactor one line of program I at each time. Our first

step is to use the ranked list of APIs to create a program sketch where the parameters are unknown. For
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instance, consider the first layer from the motivating example that shows the network for an autoencoder

using TensorFlow:

tf.keras.layers.Conv2D(filters=32, kernel_size=3, strides=(2, 2))

A possible sketch for this call using PyTorch is:

torch.nn.Conv2d(#1, #2, (#3,#4), stride=(#5, #6), padding=(#7, #8))

Where holes #i have to be filled with a specific value for the APIs to be equivalent. This approach works

for one-to-one mappings but would not support common one-to-many mappings where the parameters of-

ten need to be transformed before being used in the new API. This is the case of the previous API where a

reshaping operation must be performed before calling the PyTorch API. To support this common behavior, we

include in our program sketch one API from the target library T and common reshaping APIs (e.g., permute).

The sketch that corresponds to the refactoring solution of the Conv2D API from TensorFlow uses a reshap-

ing API before calling the Conv2d API from PyTorch:

lambda x: x.permute(#9, #10, #11, #12)

torch.nn.Conv2d(#1, #2, (#3, #4), stride=(#5, #6), padding=(#7, #8))

Using Occam’s razor principle, our program synthesizer enumerates program sketches of size 1 and iter-

atively increases the size of the synthesized program up to a specified limit.

Program Enumeration. For each program sketch P, our program synthesizer enumerates all possible com-

pletions for each hole. Since each hole has a given type, we only want to enumerate well-typed programs. We

encode the enumeration of well-typed programs into a Satisfiability Modulo Theories (SMT) problem using a

combination of Boolean logic and Linear Integer Arithmetic (LIA). This encoding is similar to other approaches

that use SMT-based enumeration for program synthesis [86] and encodes the following properties:

• Each hole contains exactly one parameter;

• Each hole only contains parameters of the correct type.

A satisfying assignment to the SMT formula can be translated into a complete program. The types for each

hole can be determined by extracting this information from documentation, by performing static analysis, or

by having this information manually annotated in the APIs. The available parameters and their respective

types can be extracted automatically from the parameters used in the 𝑘-th line of program I and by any

default parameters that can be used in the API from T that appears in the program sketch P. For instance,

for the Conv2d example presented in this section, we consider as possible values for the holes, the values

that appear in the existing code (32, 3, 2) and default values for integer parameters (-1, 0, 1, 2, 3) that are

automatically extracted from documentation.

Encoding the enumeration of well-typed programs in SMT has the advantage of making it easier to add

additional logical constraints that can prune the search space.
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Figure 3.4: Relationship between the parameters of Conv2d API described in PyTorch documentation [78].

3.2.4 Documentating Metadata to guide Synthesis

As we described in Section 3.2.1, API documentation often provides additional useful information about pa-

rameters to function calls, including type and default values. For each considered API call, we scrape/process

the associated documentation to extract these properties and encode them as SMT constraints to further

limit the synthesizer search space.

Additionally, some APIs have complex relationships between parameters which if encoded into SMT may

reduce the search space considerably. For instance, Figure 3.4 shows the relationship between the different

parameters for the Conv2d API described in PyTorch documentation. For APIs with these kinds of shape

constraints, we can encode these relationships into SMT to further prune the number of feasible completions.

When we use these relationships in our experiments, we encode them manually (a one-time cost for an actual

SOAR user or API maintainer), but we observe that in many cases they could be automatically extracted from

documentation.

3.2.5 Error Message Understanding

Besides meta-data, we can also guide the refactoring engine using the error messages provided by the Python

interpreter. The idea is to give feedback to the program synthesis engine during the refactoring process.

We use a simple natural language processing approach to extract data from compiler error messages.

Specifically, we extract hyponymy relations and use Word2vec [87] to understand run-time error messages.

We transform error messages into constraints for our synthesizer. Figure 3.5 illustrates the process.

Step 1: Extract hyponymy relation candidates from error messages. We perform an automatic extraction

of customized hyponyms on each error message. Hyponyms are specific lexical relations that are expressed

in well-known ways [88]. In encoding a set of lexico-syntactic patterns that are easily recognizable (i.e., hy-

ponyms), we avoid the necessity for semantic extraction of a wide-range of error message text. We then use

23



Trying to create tensor with negative dimension -2: [40, -2, 3, 3]

Hyponym 1

torch.nn.Conv2d(-2,40,(3,3),stride=(1,1),padding=(0,0))

POS = JJ Target ParamPOS = NN

in_channels > 0

['in_channels=-2', 'out_channels=40', 'kernel_size=(3,3)', 
'stride=(1,1)', 'padding=(0,0)']

If pass: generate SMT constraint 

Step 2. Match candidate faulty parameter with program parameters

Compile program and generate error message

Trying to create tensor with negative dimension -2: [40, -2, 3, 3]

Step 1. Collect candidate faulty parameters and fault causes

Step 3. Mutate program   

self.var5 = torch.nn.Conv2d(1,40,(3,3),stride=(1,1),padding=(0,0))

If fail

Figure 3.5: Example error message to SMT constraint pipeline using hyponym 1.

the collected hyponyms to map the error message to a single faulty parameter, and output a SMT constraint

based on the faulty parameter.

We use four manually crafted lexico-syntatic patterns to identify hyponyms using noun-phrases (NP) and

regular expressions frequently appearing in machine learning API error messages.

Step 2: Identify candidate faulty parameters and constraints. Step 2 uses different keywords based on

the result of step 1 to identify the faulty parameter. As shown in Figure 3.5, an error message with hyponym

1 is likely to have the POS=JJ word as a parameter constraint (i.e., word “negative"). Based on the fault cause

candidate, we then store all negative numbers as candidate faulty parameters (e.g., [40, -2, 3, 3] has -2 as the

only faulty parameter). We then vectorize the candidate faulty parameter name (i.e.,-2) and find the program

parameter name with the closest vectorized distance. As shown in Figure 3.5, the parameter “𝑖𝑛_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 =

−2" has the nearest vectorized distance to the candidate faulty parameter -2. Based on the fault cause, we

generate a candidate constraint. The example error message in Figure 3.5 has only one candidate constraint:

“𝑖𝑛_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 >= 0".

Step 3: Mutate program. To validate the candidate faulty parameters and constraints, we mutate each faulty

parameter according to each faulty parameter and constraints pair. We then re-compile the program for each

mutation. If the error message remains the same, we discard the faulty parameter and constraint pair as a

candidate. If the program passes, or if the error message changes, we store the faulty parameter and con-

straint pair as an SMT constraint. As shown in Figure 3.5, the API call mutator mutates the second parameter
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(“𝑖𝑛_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 = −2") to a non-negative number. The mutator first attempts “𝑖𝑛_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 = 0" and it encoun-

ters a different error message. From the new error message, we mutate this parameter to “𝑖𝑛_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 = 1"

and observe no further errors. Therefore, we refine our previous constraint to be “𝑖𝑛_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 > 0”, and

store it as the final SMT constraint for the program in Figure 3.5.

3.3 Evaluation

We evaluate our approach by answering the following research questions:

RQ1. How effective is SOAR at migrating neural network programs between different libraries?

RQ2. How effective is API documentation to establish mappings? .

RQ3. How effective is API meta-data in guiding the refactoring process?

RQ4. How useful are error messages in guiding the refactoring proccess?

RQ5. Is SOAR generalizable to domains besides deep learning library migration?

3.3.1 Benchmarks and experimental setup

We collected 20 benchmarks for each of the two migration tasks. In particular, for theTensorFlow to PyTorch

task, we gathered 20 neural network programs from TensorFlow tutorials [89], existing models implemented

with TensorFlow [90] or its model zoo [91]. This set of benchmarks includes: Autoencoders for image and

textual data, classic feed-forward image classification networks (i.e., the VGG family, AlexNet, LeNet, etc),

convolutional network for text, among others. The average number of layers in our benchmark set is 11.80±

11.52, whereas the median is 8. Our largest benchmark is the VGG19 network which contains 44 layers.

For the domain of table transformations, we collected 20 benchmarks from Kaggle [92], a popular website

for data science. The programs in the benchmark set have an average of 3.05 ± 1.07 lines of code, and a

median of 3 lines. Although the programs considered for this task are relatively small compared to the deep

learning benchmarks, they are still relevant for data wrangling tasks as shown by previous program synthesis

approaches [93].

All results presented in this section were obtained using an Intel(R) Xeon(R) CPU E5-2630 v2 @ 2.60GHz,

with 64GB of RAM, running Debian GNU/Linux 10, and a time limit of 3600 seconds. To evaluate the impact

of each component in SOAR, we run four versions of the tool. SOAR with TF-IDF (SOAR w/ TF-IDF) and SOAR

with tfidf-GloVe (SOAR w/ Tfidf-GloVe) to evaluate the impact of API representation learning methods. SOAR

without specification constraints (SOAR w/o Specs.) and SOAR without error message understanding (SOAR

w/o Err. Msg.) to evaluate the impact of these components on the performance of SOAR.
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Table 3.1: Execution time for the deep learning library migration task in each of the 20 benchmarks.

SOAR SOAR w/o Specs. SOAR w/o Err. Msg.

conv_pool_softmax(4L) 1.60 23.02 14.35

img_classifier(8L) 12.82 336.00 65.66

three_linear(3L) 3.18 2.34 21.07

embed_conv1d_linear(5L) 5.27 123.85 16.90

word_autoencoder(3L) 1.81 1.46 2.64

gan_discriminator(8L) 12.80 timeout 252.20

two_conv(4L) 16.69 timeout 15.09

img_autoencoder(11L) 160.97 391.09 487.54

alexnet(20L) 425.22 timeout 66.13

gan_generator(9L) 412.47 timeout timeout

lenet(13L) 280.91 timeout timeout

tutorial(10L) 6.04 timeout 58.29

conv_for_text(11L) 9.04 timeout 32.29

vgg11(28L) 40.83 timeout 132.67

vgg16(38L) 82.05 timeout 139.27

vgg19(44L) 83.99 timeout 189.90

densenet_main1(5L) timeout timeout timeout

densenet_main2(3L) timeout timeout timeout

densenet_conv_block(6L) timeout timeout timeout

densenet_trans_block(3L) timeout timeout timeout

3.3.2 Implementation

The SOAR implementation integrates several technologies. Scrapy [94], a Python web-scraping framework,

is used to collect documentation for the four libraries in our experiments. To enumerate programs in the

synthesis step, we use the Z3 SMT solver [95]. For each target program call parameter, we extract an answer

for the four parameter questions in Section 3.2.1 and generate corresponding SMT constraints. In both API

matching model and the error message understanding model, the GloVe word embeddings [80] are used

as an off-the-shelf representation of words. For the four libraries appearing in our two evaluation migration

tasks, we use TensorFlow 2.0.0, PyTorch 1.4.0, dplyr 1.0.1 (with R 4.0.0) and pandas 1.0.1, though our

proposed method and associated implementation do not rely on specific versions.
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3.3.3 Results

3.3.3.A RQ1: Overall SOAR effectiveness

Table 3.1 shows how long it takes to migrate each of the deep learning models from TensorFlow to PyTorch,

using the various approaches. Our best approach (shown as SOAR) successfully migrates 16 of the 20 DL

models with a mean run-time of 97.23±141.58 seconds, and a median of 14.76 seconds. The average number

of lines in the 16 benchmarks that we successfully migrate is 13.6 ± 12.14, whereas the average number of

lines in the output programs is 18.56±16.40. The reason the number of synthesized lines is higher than those

in the original benchmarks is that we frequently do one-to-many mappings. In fact, 15 out of the 16 require at

least one mapping that is one-to-many. In the 16 benchmarks, SOAR tests on average 4414.18±5676 refactor

candidates (i.e. program fragments tested for each mapping), and it needs to test a median 2111 candidates

before migrating each benchmark. The reason 4 benchmarks timeout is that in each of these benchmarks

there is at least one API in the benchmark that has a poor ranking (i.e., not in the top 200).

3.3.3.B RQ2: How effective is API documentation to establish mappings?

In Table 3.2, we show results of SOAR using different API representation learning methods, namely TF-IDF

and TFIDF-GloVe, as described in Section 3.2. We can see that for these tasks of TensorFlow to PyTorch

migration, using TF-IDF-based API matching model works better than adding pretrained GloVe embeddings.

We believe this is because similar APIs are often named with same words(e.g., Conv2DTranspose vs. Con-

vTranspose2d) or even identical name (e.g., the APIs of creating a Rectified Linear Unit are both named as

ReLU(...)), for TensorFlow and PyTorch. Thus simple word matching method like TF-IDF is suffice for API

matching purposes.

Another interesting result worth noticing is that although the synthesis time differs for the two approaches,

the average rankings are quite similar for most of the benchmarks. The reason is that despite the average

rankings of correct target APIs being similar, the incorrect APIs ranked by the model before the correct one

is different, and the time it takes to rule out those incorrect APIs varies greatly, determined largely by the

number of parameters required for that API.

3.3.3.C RQ3: How effective is API meta-data in guiding the refactoring process?

In Table 3.1, we also show the impact of specification constraints that describe the relationship between

different parameters of a given API (see Section 3.2.3 for details). Even though, we only have these complex

specifications for the 7 most common APIs, the impact on performance is significant. Without these specifica-

tion we can only solve 6 out of 20 benchmarks. Relating the arguments of the APIs helps SOAR to significantly

reduce the number of argument combinations that it needs to enumerate.
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Table 3.2: Execution time and average API ranking for each of the 20 benchmarks using TF-IDF and GloVe models.

SOAR w/ TF-IDF SOAR w/ Tfidf-GloVe

Time(s) Avg. Ranking Time(s) Avg. Ranking

conv_pool_softmax(4L) 1.60 1.0 1.56 1.0

img_classifier(8L) 12.82 2.8 31.04 2.8

three_linear(3L) 3.18 8.0 7.70 8.0

embed_conv1d_linear(5L) 5.27 2.4 7.75 2.4

word_autoencoder(3L) 1.81 1.0 1.52 1.0

gan_discriminator(8L) 12.80 2.8 37.01 2.8

two_conv(4L) 16.69 1.0 13.75 1.0

img_autoencoder(11L) 160.97 1.9 166.34 2.0

alexnet(20L) 425.22 2.1 428.42 2.1

gan_generator(9L) 412.47 2.0 1892.86 2.0

lenet(13L) 280.91 4.3 timeout 89.1

tutorial(10L) 6.04 2.3 21.31 2.4

conv_for_text(11L) 9.04 2.3 14.08 2.3

vgg11(28L) 40.83 1.8 73.92 1.8

vgg16(38L) 82.05 1.6 114.41 1.6

vgg19(44L) 83.99 1.5 114.98 1.5

densenet_main1(5L) timeout 172.8 timeout 285.4

densenet_main2(3L) timeout 16.0 timeout 387.5

densenet_conv_block(6L) timeout 293.3 timeout 612.7

densenet_trans_block(3L) timeout 291.0 timeout 480.0

3.3.3.D RQ4: How useful are error messages in guiding the refactoring proccess?

As shown in Table 3.1, SOAR performs significantly better when using the error message understanding

model. We can observe that without this component, two of the benchmarks that SOAR could solve would

timeout at the 1 hour mark. For the 14 benchmarks it still manages to solve, the synthesis time increases on

average 4.66×. The number of performed evaluations also increase substantially for each benchmark. For

the 16 benchmarks that SOAR successfully migrates, we evaluate an average of 43319.63± 61259.62 refactor

candidates without the error message understanding model. This corresponds to a 9.81× increase in the

number of necessary evaluations when compared to the full SOAR method. In summary, we can significantly

reduce the search space by interpreting error messages.
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Figure 3.6: Comparative results of dplyr-to-pandas task.

3.3.3.E RQ5: Generalizability of results

Our experiments so far concern deep learning library migration in Python. To study the generality of our

proposed SOAR, we applied SOAR to another task of migrating from dplyr, a data manipulation package for

R, to pandas, a Python library with similar functionality. Fig. 3.6b shows how the two API matching methods

perform in this domain. While with Tfidf-GloVe, 30% of the correct APIs are ranked among the top 5, saving lots

of evaluations for the synthesizer, none of the correct APIs are ranked by the TF-IDF-based matcher as its first

5 choices. Worse, nearly half of those are ranked above 100, making the synthesis time almost prohibitively

long. We believe this is because the lexical overlap between the names of similar APIs in those two libraries

is much smaller compared to the deep learning migration task. For example, dplyr’s arrange and panda’s

sort_values provide the same functionality (they both sort the rows by a given column), but the function

names are different. In this way, Tfidf-GloVe can take advantage of the pretrained embeddings to explore the

similarities between APIs beyond simple TF-IDF matching.

In Figure 3.6a, we show the time it takes to migrate each of the 20 benchmarks with a timeout of 3600

seconds when using word embeddings. We solve 18 out of 20 collected benchmarks in under 102.5 seconds.

The average run time for 18 benchmarks is 17.31±22.59 seconds and a median of 12.19 seconds. Note that for

this task we did not consider error messages, nor specifications since we wanted to test how a basic version

of SOAR would behave in a new domain. Moreover, for this domain, all the refactored benchmarks only used

one-to-one mappings since no additional reshaping was needed before invoking pandas APIs. Even with

these conditions, we show that we are able to successfully refactor code for a new domain across different

languages.

3.4 Discussion and threats to validity

Overall, we focus our design and evaluation on deep learning and data science libraries. These libraries have

properties that render them well-suited to our task in terms of common programming paradigms, and norms,
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such as in the API documentation. However, we believe this is also a particularly useful domain to support,

given the field’s popularity and how quickly it moves, how often new libraries are released or updated, as well

as the wide variety of skill sets and backgrounds present in the developers who write data science or deep

learning code. Automation of migration and refactoring in this domain is very minimal, and we design SOAR

as a step towards better tool support for this diverse and highly active developer population.

Next, we discuss the main limitations of our method and possible challenges for extending SOAR’s ability

to refactor new APIs, even potentially beyond the domain of data science.

Benchmarks. Our evaluation of SOAR uses benchmarks from well-known deep learning tutorials and archi-

tectures. However, they are all feed-forward networks, effectively sequences of API calls where the output of

the current layer is the input of the next layer. There may be more applications that share this feature, but

support for more complex structure is likely necessary to adapt to other domains.

Additionally, and naturally, the APIs in the benchmarks we collected may be biased and not reflect the

set of APIs developers actually use. To assess this risk, we checked the degree to which the APIs used in our

benchmarks appear to be widely used on other open-source repositories on GitHub. To do this, we collected

the top 1015 starred repositories that have TensorFlow as a topic tag, which contains over 8 million lines of

code and over 500K TensorFlow API calls. We found that 76% of the 1000+ repositories use API calls included

in our benchmarks at least once, which validates some representativeness of our collected benchmarks.

Automatic testability. One benefit of the data science/scientific computing domain is that much of the input,

output, and underlying methods are typically well-defined. As a result, it’s particularly easy to test and verify

the correctness of individually migrated calls, which can be processed in sequence. There may be other types

of libraries that share these types of characteristics, like string manipulation or image processing libraries,

whose intermediate outputs are strings/images. We also assume user-provided tests. Given the migration

task, it is reasonable to assume the user has tests (the code must be sufficiently mature to justify migrating,

after all), but a more general solution might benefit from automatically generating tests, which would both

alleviate the input burden on the user and, potentially, reduce the risks of overfitting. In our current imple-

mentation, we moreover use the provided tests to construct smaller test cases for each mapping. This is

particularly easy in this domain, because data science and deep learning API calls are often functional in their

paradigm. Adapting the technique to other paradigms would require more complex test slicing or generation

to support synthesis.

Correctness. Since we evaluate our migration tasks using test cases, it is always possible for our approach to

overfit to said test cases. However, this threat can be mitigated if the user provides a sufficiently robust test

suite that provides enough coverage.

Additionally, code written to different APIs may be functionally equivalent, but demonstrate different per-

formance characteristics, which we do not evaluate. However, this fact is one reason users might find SOAR

useful in the first place: a desire to migrate code from one library to another that is more performant for the
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given use case.

Error message understanding. The error message understanding model is built on four domain specific

lexico-syntatic patterns, which we identify as hyponyms when they appear in an error message. We propose

the hyponyms based on the specific syntax of DL API error messages, thus take non-trivial human effort to

make it generalize to error messages that appear when calling APIs from libraries of other domains. How-

ever, we believe the idea of program mutation (Step 3 of Fig. 3.5) is still widely applicable for the purpose of

generating SMT constraints when dealing with error messages.

Synthesis. Our approach supports one-to-many mappings but it restricts the mapping to one API of the

target library and one or more reshaping APIs. However, this could be extended to include many APIs of

the target library at the cost of slower synthesis times. An additional challenge is to support many-to-one or

many-to-many mappings since this would require extending our synthesis algorithm. However, even with the

current limitations, our experimental results show that the current approach can solve a diverse number of

benchmarks.

3.5 Key Takeaways and Contributions.

In this chapter, we demonstrate that API documentation can serve as a proxy to establish API mappings for

migration. We used these mappings to guide a Synthesis approach for API Refactoring (SOAR). SOAR uses a

generate-and-test strategy, as computing mappings alone is insufficient for completing a migration; API argu-

ments and glue code also need to be mapped. Moreover, we cannot blindly trust the mappings derived from

the documentation; indeed, the correct mappings are sometimes not correct (i.e., corresponding APIs may

be apart in the embedding space, meaning they might be closer to other, non-semantically equivalent APIs).

For these reasons, to complete migrations, we test the API mappings with multiple different combinations of

arguments using synthesis. We determine that a particular API migration is complete if the synthesized code

produces the same output on a set of auto-generated inputs. During the synthesis process, the interpreter

also outputs warnings or errors due to API usage. We leverage this information with a simple error message

understanding mode, which we use to prune the search space.

Overall, our approach successfully migrates API calls within reasonable time frames, particularly for small

programs (under 100 lines) where it is feasible to compare objects across implementations. Since we syn-

thesize code directly rather than generating migration scripts, this method is not generally applicable for

large-scale refactorings of code bases comprising millions of lines of code. We aim to tackle this limitation in

our proposed work (Chapter 6) on synthesizing of migration scripts for library migrations.
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4
Mining API Refactoring Rules from the

API Development Process
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In this section, I discuss my completed and published work titled "Mining Effective Lightweight Trans-

formations from Pull Requests" (MELT) [43]. In this work, we leverage the API development process from

open-source libraries (i.e., pull requests) to mine rules for fixing breaking changes between library versions.

One core idea of MELT is to identify pull requests (PRs) between library releases that break existing APIs. Upon

identifying these PRs, we extract data from a variety of sources. First, we identify code changes to test cases

that developers made after breaking the API. Our key observation is that if a library is well-tested, developers

need to update test cases when they break an API; otherwise, the tests would fail. This data allows us to mine
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Figure 4.1: MELT takes as input a pull request (PR) and outputs a set of rules. The PR is processed in two ways: (1) the

Code change analyzer identifies relevant code changes; (2) the Code generation model generates additional

code examples. Rules are inferred from the code changes and examples, then filtered and generalized.

Figure 4.2: Code change in pull request #44539 [96] from the pandas-dev/pandas repository.

rules directly from the library instead of relying on downstream clients like the majority of state-of-the-art

methods. The migrations themselves are expressed in the comby language for broader applicability. This

means the synthesis only needs to happen once.

4.1 Motivating Example

Figure 4.1 provides a high-level overview of MELT and its main components. We delve into the specifics of

each component in Section 4.2.

Pull requests are the input of MELT, as they are the key source that informs our approach. Pull requests

generally contain all the code changes related to a given new feature. For example, Figure 4.2 shows an

example code change from a pull request [96] submitted to pandas [97] that deprecates two popular APIs:

DataFrame.append and Series.append.1 MELT identifies code changes, such as the one shown in Fig-

ure 4.2, within the pull request using its Code Change Analyzer (Section 4.2.1) and inputs them into the Rule

Inference algorithm (Section 4.2.3.A) to generate rules. The top portion of Table 4.1 shows two of the rules

1Both APIs were later removed from pandas in version 2.0.0.
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Table 4.1: Top: comby rules extracted from pandas pull request #44539, deprecating DataFrame.append and Se-

ries.append. Bottom: Rules extracted from sci-py pull request #14419, including original specific (“Spec”)

and generalized (“Gen”) versions. Template variable constraints are omitted for brevity.

Match Template Rewrite Template

:[[s2]].append(:[[s1]])

where :[[s1]].type == Series and

:[[s2]].type == Series

pd.concat([:[[s2]], :[[s1]]])

:[[df]].append(:[[s]])

where :[[df]].type == DataFrame and

:[[s]].type == Series

pd.concat([:[[df]],

DataFrame(:[[s]]).T.infer_objects()])

Type Match Template Rewrite Template

Spec :[[s]].spline.cspline2d(:[[x]],:[y]) :[[s]].cspline2d(:[[x]], :[y])

Gen :[[s]].spline.cspline2d(:[args]) :[[s]].cspline2d(:[args])

MELT infers from the code changes for this specific pull request.

The rules in Table 4.1 are expressed in comby’s domain specific language [98]. The match template (left

column) is the code structure for which comby searches. The rewrite template (right column) shows how

to transform the matched code based on the variables in the match template [23]. comby uses template

variables, i.e., placeholders that can be matched with certain language constructs. For example, a template

variable to match alphanumeric characters is represented by :[[x]], where x is the name of the template

variable. The template variables in the match template can be constrained in multiple ways using a where

clause. In particular, to prevent spurious matches, template variables can be constrained to be a certain type

(like :[[s2]].type == DataFrame). Although type information is not strictly required, it is useful when

working with common API names such as append and concat (both are part of Python’s stdlib).

Code diffs in pull requests provide valuable information, however, they do not always contain the neces-

sary code examples for rule inference. Fortunately, pull requests offer alternative sources of information that

can be used to extract further details about the changing APIs. Figure 4.3 shows an informative comment left

by a developer in a code file when deprecating namespace scipy’s [99] namespace scipy.signal.spline

in favor of scipy.signal. To leverage all available information in the pull request, MELT uses a Code Gen-

eration Model to generate additional code examples and test cases for this change (Section 4.2.2). Figure 4.4

shows a simplified version of code GPT-4 [39] (a state-of-the-art model) generates from the pull request in

Figure 4.3. The generated examples enable us to both infer and test the rules.

Since the test case executes successfully, MELT uses the code example to generate a rule by abstracting

35



Figure 4.3: Pull Request #14419 [100] from scipy/scipy. This pull request was part of SciPy 1.8, released in Feb 2022.

def old_usage1(image):

return signal.spline.cspline2d(image,

8.0)

def new_usage1(image):

return signal.cspline2d(image, 8.0)

(a) Old and new usage of cspline2d.

class TestEquiv(unittest.TestCase):

def test_assert1(self):

np.random.seed(181819142)

image = np.random.rand(71, 73)

assert np.allclose(old_usage1(image),

new_usage1(image))

(b) Test case for the transition.

Figure 4.4: Code generated by GPT-4 showcasing how to transition from the old cspline2d usage and a test case.

concrete identifiers and literals. For this case, MELT generates the rule in the third row of Table 4.1. This rule

accurately reflects the deprecation made in the pull request (i.e., replaces the deprecated namespace with

the new one). Nevertheless, a closer inspection reveals that the rule is too specific: it will only match usages

where: (1) the first argument of cspline2d is an identifier (:[[s]] only matches with identifiers), and (2) the

function is called with two or more arguments. The cspline2d function can accept multiple combinations of

arguments, including keyword arguments with default values.

To guard against overly-specific rules, MELT applies Rule Generalization (Section 4.2.3.C). For example, the

template holes :[[x]] and :[y] in the rule in the first row of the bottom of Table 4.1 remain unchanged in

the match and rewrite templates, indicating that they are not relevant to the change at hand. To enhance the

rule’s applicability, MELT generalizes the specific argument combination, resulting in an updated version of

the rule (shown in the last row of Table 4.1). The revised rule uses a more permissive match template using

:[args], which can match any number of function arguments.

4.2 MELT’s Approach

In this section, we provide a brief overview of MELT’s approach.
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4.2.1 Extracting Code Examples from Diffs in Pull Requests

MELT’s input is a pull request P, which contains both natural language descriptions and a set of code diffs,

each of which corresponds to changed code snippets. However, not all diffs in a pull request are relevant to

an API change, as they may encompass unrelated refactoring actions. Therefore, MELT first identifies which

changes in the pull request are relevant to the API of interest.

MELT determines which code changes are relevant using its Code Change Analyzer. MELT starts by pinpoint-

ing which public APIs are affected by the pull request by examining the scope of each code diff to identify the

affected function and its corresponding class. For example, for the code change in Figure 4.2, MELT identifies

the function name test_datatimeindex and the class where the function comes from TestSeriesFor-

matting. MELT filters out test functions and private namespaces, to exclude API names that are not the main

focus of the change.2 On this example, the test class and method will be filtered, but other changes in the

same PR (not shown) affect the append and concat methods, so MELT considers those methods relevant.

MELT then filters the code diffs to retain only those diffs and surrounding code that contain at least one

of the relevant keywords. This produces a set of code examples to serve as inputs to rule inference. For the

pandas example, although the test method itself is not a relevant API name, the code change in that test

method does concern relevant API calls, and so these diffs will be retained for use in inference. A strength of

this approach is its generalizability across multiple libraries and languages, since it works at token level.

4.2.2 Generating Examples for Mining using Natural Language

As illustrated in Section 4.1, pull requests sometimes lack sufficient code examples to infer migration rules.

In a preliminary study, we analyzed 174 pull requests related to breaking changes and deprecations from

pandas’ release notes. We discovered that only 41 (23.6%) of these pull requests contained at least one

meaningful code example showcasing the transition from old to new usage. However, pull requests offer

other information sources about API changes, including natural language descriptions in comments, devel-

oper discussions, and documentation. Our key insight is that this additional data can also be leveraged to

generate and test more code examples. MELT uses a Code Generation Model to produce extra code examples

from this data. Generating code examples rather than the rules directly is advantageous, because we can test

and validate the generated code, enhancing confidence in the rules inferred from it. Additionally, the code

examples may enhance interpretability by demonstrating the provenance of inferred rules to MELT users.

We developed prompts and conducted experiments with GPT-4 8K [39], which is well-versed in our target

libraries’ code, to process PR information (code diffs, title, description, discussion). For each PR, we asked the

model to generate: 1. transition examples, and 2. test cases asserting that the old behavior was the same

as the new one. Full prompts and algorithmic description can be found in the paper. However, the key idea
2Although our experiments do not exercise this setting, developers can also provide the names of affected APIs when submitting the

pull request, which MELT can use directly to eliminate irrelevant code changes.
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(a) Code before migration

r = pd.read_csv(f, compression=comp,

encoding=enc, index_col=0,

- squeeze=True)

(b) Code after migration

r = pd.read_csv(f, compression=comp,

encoding=enc, index_col=0).

+ squeeze()

Figure 4.5: Example code change from PR #43242 [102] in pandas

is to check if automatically generated tests are correct according to the automatically generated test suite.

To make sure the test suite is not spurious, we sample multiple tests. If any test fails, the example is not

considered for mining.

4.2.3 Rule Mining from Examples

MELTuses thecomby language [23] and toolset [98] to express refactoring match-replace rules. We introduced

some elements of the language in Section 4.1, with examples of comby’s syntax-driven match and rewrite

templates. Formally, a rewrite rule in comby is of the form M −→ R where c1, c2, ..., c𝑛, where M is the

match template, R is the rewrite template, and c1, c2, ..., c𝑛 are constraints in the rule language. The key

structure of comby rules are template variables, which are holes in the match and rewrite templates that can

be filled with code. Template variable types include, e.g., :[[x]] matching alphanumeric characters (similar

to \w+ in regex), and :[x] matching anything between delimiters (e.g., [],(),{}). comby also supports a

small rule language to add additional constraints, like types or regular expression matches, on the template

variables. comby’s website [98] provides the full syntax reference. Although language agnostic, comby is still

language aware, and can deal with comments and other language-specific constructs. Its rules are also close

to the underlying source, and thus typically easier to read than, e.g., transformations over ASTs.

4.2.3.A Rule Inference

Given a set of code examples, MELT infers a set of comby rules that can be used to automatically migrate

APIs in client code. First, MELT parses the code files corresponding to each code diff into an abstract syntax

tree (AST), identifying the nodes corresponding to the change before and after. MELT then uses a variation

of InferRules’s algorithm [101] (adapted to Python) that always returns a single rule, and never abstracts

away class names, method names, and keyword arguments.

To illustrate, consider the code change in Figure 4.5, where a library maintainer transforms a keyword

argument into a function call. The smallest unit MELT considers for a comby rule is a source code line. Given

the two assignment nodes corresponding to the change, rule inference then abstracts away child nodes with

template variables. When a construct has the same character representation, MELT uses the same template

variable. For the example, MELT abstracts the left-hand side and right-hand side of both assignments, yielding:

:[[a]]= :[b], and :[[a]]= :[c]. Notice that the template variable for the target of both assignments
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is the same, :[[a]], because their source representation is the same. However, MELT cannot match the

right-hand side of the assignments (:[[b]], and :[[c]]). It, therefore further decomposes the AST nodes’

children:

:[[a]] = :[[i]].read_csv( [[d]],

compression=:[e], encoding=:[f], −→

index_col=[[g]], squeeze=:[[h]])

:[[a]] = :[[i]].read_csv(:[[d]],

compression=:[e], encoding=:[f],

index_col=:[[g]]).squeeze()

MELT never abstracts away class names, function names, and keyword arguments, as preserving these

details is crucial for API migration. Additionally, MELT consistently yields a single, all-encompassing rule. In

this case, MELT can match every template variable in the match template with a corresponding node in the

rewrite template except :[[h]]. Consequently, it attempts to further decompose the nodes, but still fails to

match :[[h]], ultimately reverting it and generating the final rule:

:[[a]] = :[[i]].read_csv([[d]],

compression=:[e], encoding=:[f], −→

index_col=:[[g]], squeeze=True)

where :[[h]].type == int,

:[[i]].type == pandas

:[[a]] = :[[i]].read_csv(:[[d]],

compression=:[e], encoding=:[f],

index_col=:[[g]]).squeeze()

After inferring a rule, MELT incorporates type guards. The goal is to constrain each template hole to

its respective observed type. This step is crucial in preventing the misapplication of rules for common API

names (e.g., matching List.append when the rule targets DataFrame.append). In contrast to previous rule

synthesis approaches [101, 103], MELT directly incorporates type constraints into comby’s rule language. This

integration is possible because we extend comby to support Language Server Protocol (LSP) type inference.

MELT uses the Jedi [104] type inference language server, making it available for client usage.

4.2.3.B Rule Filtering

Occasionally, MELT infers spurious rules (e.g., rules that contain variables in the rewrite template that might

not be in scope). First, MELT discards duplicate rules within the same pull request (post generalization, as

well). A rule is considered a duplicate if all of the match, rewrite template and template variable constraints

are the same. MELT then further filters by:

API Keywords MELT discards transformation rules that do not contain the name of any affected APIs. This

can occur when a developer modifies the surrounding context of a code block, for example, by wrapping a

statement in a try-catch block (e.g., :[x]−→ try:\n:[x]). These rules are considered spurious because they

can match arbitrary code and are not specific to API migration.

Unsafe Variable and Private Namespaces MELT discards rules where a rewrite template uses either vari-
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ables from private namespaces (indicated by calls with underscores, Python’s convention for private attributes/-

functions/namespaces), or variables not present in the match template. This ensures that the rules do not

rely on private or internal functionality that is not accessible to client code.

4.2.3.C Generalizing Rules

Rules inferred from single code examples may be too specific, as demonstrated in our rule for the squeeze

example so far. This change is specific to a particular argument combination. However, the read_csv function

has numerous optional arguments, and the rule should therefore be versatile. Moreover, it can only be applied

to assignments, even though the migration applies to other contexts.

Therefore, our approach generalizes rules for broader applicability by abstracting irrelevant context and

generalizing arguments. MELT removes common context in the source and match templates unrelated to

the API. For our example, it unwraps the assignment statement and simply keeps the API call. MELT also

uses InferRules [101] algorithm to find mappings between call nodes in the match and rewrite template,

and generalizes common arguments. If there are multiple consecutive arguments between the match and

rewrite template of the call node, we replace the arguments with a generic template variable :[args]. For

our running example, the final rule is:

:[[i]].read_csv(:[args], squeeze=True) −→

where :[[i]].type == pandas

:[[i]].read_csv(:[args]).squeeze()

Generalization is crucial to ensuring broader rule applicability. The paper describes the generalization

algorithm in more detail.

4.3 Evaluation

We answer the following research questions:

RQ1. How effectively can MELT generate transformation rules from code examples in pull requests?

RQ2. How do code examples generated automatically complement code examples in pull requests?

RQ3. What is the impact of rule generalizability?

RQ4. Are the rules effective for updating client code?

4.3.1 Experimental Setup

4.3.1.A Implementation

Although our approach is largely language-agnostic, we implement it for Python libraries because: (1) Python

is one of the most popular programming languages [105], and (2) there exists a gap in migration tools for
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Python [27]. We implemented rule inference using the Python abstract syntax tree (AST) module. Infer-

Rules [101] was originally implemented for Java AST; we brought native implementation to Python. We also

perform rule generalization at the Python AST level. For code generation, we used the state-of-the-art GPT-4

[39]. We extended comby to support Language Server Protocol (LSP)-based type inference over match tem-

plates [106] with Jedi [104], a state-of-the-art static analysis tool. MELT’s source code, data, and logs used

for the evaluation are available at Zenodo [107].

4.3.1.B Methodology

We evaluated MELT using four of the most popular Python data science libraries: numpy, scipy, sklearn,

and pandas. We collected a total of 722 pull requests for pandas, 141 for sklearn, 186 for numpy, and 130

for scipy using the GitHub QL API and web crawlers over release notes. We took a convenience sampling

approach to find PRs concerning API or breaking changes, or deprecation-related PRs, moving backwards

from the version of each library (as of April 2023); this includes merged PRs intended for future library releases,

as well as those that have been released. We collected more PRs for pandas than other libraries because it

had a higher number of pull requests, and breaking changes in pandas are particularly well documented. We

then executed MELT on each pull request.

For our manual assessment of rule correctness and relevancy, two authors of this paper manually labeled

a set of rules independently. We defined a rule to be correct if (1) it correctly reflects the change in the pull

request, and (2) it is generally applicable to client code and does not overgeneralize (i.e., it will not produce

incorrect migrations even if it matches the correct APIs in some cases). This procedure requires analyzing

the pull request discussion, changes, source code, and documentation when necessary. The annotators dis-

cussed five representative examples together and then individually labeled 151 unique rules, achieving an

inter-rater reliability (IRR) with a Cohen’s kappa of 0.84 (almost perfect agreement) [108]. Due to the high

agreement, the first author labeled the remaining rules to cover all research questions.

4.3.2 Results

4.3.2.A RQ1: Mining Rules from Code Examples in PRs

Table 4.2 summarizes MELT’s rule inference algorithm on 1179 PRs (722 pandas, 130 scipy, 186 numpy, 141

sklearn). MELT’s ability to extract code examples from pull requests largely depends on the libraries’ testing

practices. Nonetheless, a significant number of pull requests contain valuable examples for rule extraction.

Previous studies [109] found that only 27.1% of migrations in a different set of libraries were potentially fully

automatable. MELT generates correct migration rules for 12.2% of analyzed pull requests, indicating room

for improvement (further explored in RQ2).

Running MELT’s rule inference algorithm to the 1179 PRs results in 5504 rules. After filtering and gen-
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Table 4.2: RQ1. Left: Pull requests per library, with mined rules and correct rules. Right: Filtered and generalized rules

mined per library, with total and correct counts.

PRs with

Library # PRs
Mined Correct Mined Rules

Rules Rules Total Correct (%)

pandas 722 169 102 521 359 (68.9 %)

scipy 130 21 11 33 19 (57.6 %)

numpy 186 20 10 47 27 (57.4 %)

sklearn 141 38 21 82 56 (68.3 %)

Total 1179 248 144 683 461 (67.5 %)

eralization, we ended up with 683 rules. The right-most columns of Table 4.2 show the number of mined

rules after generalization and filtering for each library, and their correctness based on manual validation. On

67.5% of the cases, our mined rules are correct and do not overgeneralize. However, on 32.5% of the cases,

MELT derived incorrect, non-generally applicable, or over general rules. We observed three primary reasons

for incorrect rules: (1) Code change not generally applicable, such that the rule cannot capture the context

in which it is applicable. For example, in numpy PR #9475 [110], the np.rollaxis is deprecated in favor

of np.moveaxis. Migrating from one API to another depends on the actual content of the variables used

in the API, as it behaves differently depending on the variables’ content. Our rule cannot capture this, as it

only considers types, not content. (2) Overgeneralization of rule arguments. For instance, pandas PR #21954

[111] says “read_table is deprecated. Instead, use pandas.read_csv passing sep=‘t’ if needed.". However, one of

the inferred rules is read_table(:[args]) ↦→ read_csv(:[args]), because the algorithm abstracts all

arguments based on the code example. and, (3) Unrelated changes not caught by filtering.

4.3.2.B RQ2: Mining Rules from Autogenerated Code Examples

To evaluate the role example generation played in rule inference, we sampled 50 pull requests for each library

(limited by budget). We used a template to create a prompt to ask the model to generate both code examples

and test cases/inputs for the examples, per pull request. The prompt includes the title, description, discussion,

and code changes. We used OpenAI’s API to prompt GPT-4, with a (default) temperature of 0.2, and sampled

the model 5 times to generate transition examples. We then followed up with the model to ask for test cases

for each sample (in total 10 requests per PR).

The left side of Table 4.3 shows the number of unique examples generated for each library and the number

of examples that passed the test suite. MELT produced 248 unfiltered and ungeneralized rules on these ex-

amples; filtering and generalization produced 156 unique rules. We also assessed whether these rules could
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Table 4.3: Left: Code examples generated and passing tests per library. Middle: Pull requests with mined and correct

(“Corr.”) rules from generated examples. Right: Filtered and generalized rules per library. Note: Limited to 50

PRs per library for budgetary reasons.

Code PRs with Mined Rules

Examples Rules Correct

Library Total # pass Total Corr. Total Prev New

pandas 285 134 25 19 45 7 30

scipy 194 68 15 13 30 4 18

numpy 222 114 21 14 46 2 31

sklearn 187 63 21 13 35 5 17

Total 888 379 82 59 156 18 96

have been generated from the pull request code directly, by checking (1) whether they were mined in RQ1

(Section 4.3.2.A), or (2) whether they could be directly applied to their corresponding pull request (meaning

that they could have been mined in RQ1, but may have been heuristically filtered away).

Table 4.3 summarize rule mining success using generated examples by pull request (middle columns);

the right-hand side shows the number of rule mined. We categorized correct rules into those that could

have been mined without new examples (prev), and those that are new with the generated examples. Like in

the previous RQ, MELT can generate incorrect rules in some scenarios. Consider the following example rule:

:[[aah]].shift(:[aae], fill_value=:[aaf]) −→ :[[aah]].shift(:[aae], fill_value=pd.Timestamp(:[aaf])). 3

This rule is derived from pandas pull request number #49362 [112]. The release notes for the PR state:

“Enforced disallowing passing an integer fill_value to DataFrame.shift and Series.shift with datetime64, timedelta64,

or period dtypes". This transformation is only valid if the series has a datetime64 dtype object, a condition

not captured by the rule. While the transformation correctly preserves behavior in this instance, it is incorrect

for general application. More diverse tests for the code example could likely increase coverage and filter more

incorrect rules.

4.3.2.C RQ3: Generalizability

Of the 156 rules we manually validated in RQ2, 41 had generalized arguments, and only 9 (22%) were

incorrect. To further evaluate the impact of generalizability with an ablation study, by disabling the general-

ization procedure. We selected 15 rules that had been generalized, along with their non-generalized coun-

terparts. Using Sourcegraph’s code search [113],4 we searched for repositories containing a given keyword

in the rule (e.g., for readcsv(..., squeeze=True), we searched for squeeze=True). We then cloned 50
3Template variables are omitted for brevity.
4Note SourceGraph only indexes repositories with at least two stars.
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Table 4.4: Comparison of Non-General and Generalized Rules

Library Original Rule Generalized Rule

Match Template Matches Match Template Matches

pandas

:[[x]].set_index(:[a], drop=:[[b]], inplace=True) 2 :[[x]].set_index(:[args], inplace=True) 370

:[[x]].read_csv(:[[a]], compression=:[[b]],

encoding=:[[c]], index_col=:[d], squeeze=True)
0 :[[x]].read_csv(:[args], squeeze=True) 21

:[[aai]].apply(:[a], axis=:[[b]], reduce=True) 3 :[[aai]].apply(:[args], reduce=True) 4

scipy

jaccard_similarity_score(:[[a]], :[[b]]) 94 jaccard_similarity_score(:[args]) 226

:[[x]].filters.gaussian_filter(:[a],

:[b], mode=:[[c]])
0 :[[x]].filters.gaussian_filter(:[args]) 86

:[[x]].query(:[[a]], :[[b]], n_jobs=:[c]) 0 :[[x]].query(:[args], n_jobs=:[y]) 0

:[[x]].hanning(:[[a]], :[[b]]) 0 :[[x]].hanning(:[args]) 0

numpy
:[[x]].alltrue(:[a], axis=:[b]) 7 :[[x]].alltrue(:[args]) 208

:[[x]].histogram(:[[a]], bins=:[b], range=:[c], normed=:[y]) 2 :[[x]].histogram(:[args], normed=:[y]) 66

:[[x]].complex(:[[a]], :[[b]]) 17 :[[x]].complex(:[args]) 20

sklearn

BaggingClassifier(base_estimator=:[[a]],

n_estimators=:[[b]], random_state=:[[c]])
26 BaggingClassifier(base_estimator=:[x], :[args]) 220

BaggingRegressor(base_estimator=:[[a]],

n_estimators=:[[b]], random_state=:[[c]])
7 BaggingRegressor(base_estimator=:[x], :[args]) 116

KMeans(n_clusters=:[a], init=:[[b]],

n_init=:[[c]], algorithm=’full’)
0 KMeans(:[args], algorithm=’full’) 38

AgglomerativeClustering(n_clusters=:[a],

linkage=:[b], affinity=:[c])
4 AgglomerativeClustering(:[args], affinity=:[c]) 28

OneHotEncoder(sparse=:[[aac]],

categories=:[[aan]], drop=:[[aaz]])
0 OneHotEncoder(sparse=:[x], :[args]) 66

random repositories for each rule, and ran the generalized and non-generalized rules on these repositories,

counting matches.

Table 4.4 shows matches for original and generalized rules, showing that generalization significantly im-

proves rules applicability. For instance, the number of matches for the set_index case increased from 2

to 370 (185x) with generalization. Generalization is important because it abstracts context unrelated to API

changes. As we focus on API migration in Python, where there can be many argument combinations (e.g.,

APIs with as many as 10 keyword arguments), generalization helps capture the essence of the change by ab-

stracting arguments. Some rules had 0 matches because comby was unable to infer types (comby does not

apply rules when it cannot infer types of a template match), or the query was poorly constructed.

4.3.2.D RQ4: Updating Client Code

To evaluate the effectiveness of our approach to updating developer code, we migrated outdated library

API usage in developer projects found on GitHub for the sklearn, pandas, and scipy libraries. Collecting

and running client projects requires significant manual effort: many projects do not specify dependencies or
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Table 4.5: RQ4. Effects of rule application on developer projects.

Library
Total

Projects

Affected

Projects

Unique

Rules

Rule

Applications

Additional

Warnings

Resolved

Warnings

Additional

Passing Tests

Additional

Failures

Resolved

Failures

sklearn 20 10 6 27 9 598 2 1 1

pandas 20 10 4 23 0 44 7 81 7

scipy 20 6 5 23 0 266 0 1 0

Total 60 26 15 73 9 908 9 83 8

provide tests. We therefore did not evaluate numpy API usage, but we can expect similar results.

We found client projects by searching GitHub for public repositories that used outdated versions of each

library, and included code that matched to at least one of the match templates of an inferred rule from RQs 1

and 2. We applied a total of 15 unique rules across the three libraries. We provide detail on specific rules and

projects in Zenodo [107]. For each library, we identified 20 client projects that used outdated versions, and

between one and three rules applied. We cloned each project, updated its library dependencies to a version

with the breaking change, installed necessary dependencies, and ran all tests to note passing tests, failures,

errors, and warnings. We then used comby to automatically update the outdated API usage, and reran the

tests to compare results post-migration. We did this separately for each applicable rule.

Table 4.5 summarizes results. Total Projects refers to the total number of projects to which we applied

rules and tested. Affected Projects refers to the number of evaluated projects that had a change in the tests

after rule application from new or resolved warnings, passed tests, or failures. Not all of the projects had

tests affected by rule application, either because test coverage was incomplete or because persistent failing

tests in developer projects obscured the effect of rule application.

For sklearn, slightly less than half the developer project tests were affected by rule application. Only two

of the projects showed a negative impact of rule application, where one project had an additional failing test

and another project had nine new warnings. The sklearn rules were applied without type information, which

is one potential cause for the negative impact. The other affected projects had warnings resolved, ranging

from 1 to 563 warnings resolved for a single project. One project had additional passing tests.

For pandas, rule application affected half of client projects. While there were 81 additional failures from

pandas rules, they were isolated to four projects and a single rule. These new failures occurred because of

a lack of type information, meaning one rule was erroneously applied to API calls unrelated to the pandas

library. In other projects, the same rule was applied correctly, even without type information, and successfully

resolved warnings. The other three unique pandas rules were applied with type information. No pandas rules

introduced new warnings.

For scipy, rules were also applied absent type information, but only one application introduced an er-

ror. All six affected scipy projects had warnings resolved by rule application, and none of the scipy rule
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applications caused additional warnings.

Of the 60 evaluation repositories, 34 had no change in the tests or warnings. However, this does not

indicate that rule transformation was incorrect or unnecessary: most projects had failing tests and errors

unrelated to API usage, which can obscure the effect of rule application. Overall, the resolved warnings and

failures demonstrate MELT’s potential to help developers more easily maintain large projects.

4.4 Discussion

In this section, we address the main limitations of our approach.

4.4.1 Limitations and threats

4.4.1.A Rule correctness.

We used manual validation to assess rule correctness, with a process that entailed high IRR kappa indicating

agreement. One approach for further validation could involve upgrading client projects to newer library ver-

sions and applying the rules on projects using these libraries. In RQ4, we use this method to demonstrate that

some rules are indeed correct. However, this process is challenging. Melt does not mine rules for all breaking

changes in a given release, so upgrading client projects may break multiple aspects in ways automatic find-

and-replace rules cannot address [109]. However, automating a large part of migration in ways that entail

minimal additional technology or effort on the part of the client developer holds promise for reducing the

challenge of upgrading library dependencies. Our rules could also potentially be validated using differential

testing techniques or by requesting more tests from the code generation model. However, it is also important

to note that we are limited by the expressiveness of the language in which we represent the changes.

4.4.1.B Code generation model.

Our approach relies on a code generation model to generate examples when none are available. We selected

GPT-4, a state-of-the-art model trained on data before September 2021. We successfully evaluated on pull

requests opened after September 2021, demonstrating the risk of data leakage in these experiments is low.

The model, however, is paid and not open-source. As AI research advances, we anticipate better models

being made public. We opt for a model-based code generation approach over generating comby rules directly

because rules can be validated with code examples (if the code does not pass, we discard the example).

Additionally, the model is not fine-tuned and has limited exposure to comby, and is likely to work better on

commonly-used languages like Python. For less popular APIs, however, fine-tuned versions of the model on

library code might be necessary.
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4.4.1.C Generalization.

Our generalization procedure removes context and arguments that appear unrelated to the change, only

considering diffs. Removing too much context and type information may result in spurious rules. Conversely,

insufficient generalization can make the rule too specific. This limitation stems from the expressiveness that

comby language provides, rather than MELT’s approach. Regardless, MELT can return both kinds of rules to

the user (i.e., specific or generalized), allowing them to decide what to keep. Currently, developers must

manually validate rules to ensure they make sense. To facilitate this, we developed a CI solution on GitHub

for integrating our tool. Rules can be validated and modified, if necessary, by whoever merges the PR, or

automatically validated, as previously discussed.

4.4.2 Comparison against prior work

Few API migration tools target Python, challenging direct comparison to prior work. MELT adapts its inference

algorithm from InferRules [101], designed for type migration in Java. Consequently, MELT without gener-

alization and filtering serves as a baseline equivalent to InferRules. The most closely related approach,

PyEvolve [103], builds on InferRules using comby as an intermediate representation. PyEvolve focuses

on general refactoring, and adapts rules to different control variants, requiring more complex client code

analysis. This is in contrast to MELT’s lightweight approach, which aims to minimize overhead on client devel-

opers. Since most of our rules are 1:1 and 1:n transformations, adapting rules for control flow variants is less

relevant. Overall, while PyEvolve is more powerful in the types of rules it can infer, fundamentally it serves a

different goal as compared to MELT.

Our evaluation differs from closely-related prior work [18, 21] in two ways. First, our manual validation

process is able to consider more information in the form of the PR and library documentation. That is, rather

than looking at rules in isolation or limiting attention to syntactic validity, we can consider whether the change

actually reflects PR intent. Second, we provide an end-to-end evaluation of automatically inferred rules on a

number of client code repositories, complementing manual rule validation.

As we discuss in Section 2.3, most prior approaches for automatic API migration (or code evolution gen-

erally) mine migration examples from client projects or their source control histories. MELT relies solely on

the changed library, looking at internal code changes to inform rule mining. This allows MELT to apply earlier

in the library update process. However, libraries do not always include sufficient changed code examples to

inform migration, which is why MELT also prompts an LLM to generate extra examples, along with tests to val-

idate those examples. Other approaches may also benefit from using LLMs this way, particularly those whose

use cases entail fewer available examples, like A3 [19] (focusing on Android API migration), or APIFix [18]

(evaluated on changes to library code, similar to MELT). APIFix in particular could likely benefit from the

LLM-generated examples and tests, because it uses edit examples in its program synthesis algorithm. Other

tools are evaluated across many more example changes to client code, like Meditor [21]. These approaches
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may not require new examples, but leveraging LLMs may allow them to apply earlier in the update process, or

in scenarios where migration examples are scarce. Indeed, as models with larger context windows become

available (e.g., CLAUDE 100K token context [114]), it becomes possible to include more comprehensive data

in prompts, such as full API documentation. This suggests a promising avenue for generating higher-quality,

context-rich examples for rule mining, particularly when extant migration examples are scarce.

4.5 Key Takeaways and Contributions

In this chapter, we demonstrated that the library development process itself can be used to mine migration

rules to address simple API breaking changes. It is not necessary to rely on commit data from client projects

that have already undergone migration. This assumption had previously limited the migration approaches,

especially immediately after a library version is released. By integrating the mining process directly with the

library workflow in CI, migration rules can be provided to clients immediately after the source code is updated.

MELT represents migration rules in comby, a lightweight match-replace language for large-scale code

transformation. Since mining can result in very specific rules, we developed a generalization procedure to

increase rule applicability. However, this approach comes with trade-offs: some rules are overly generalized

and thus may produce incorrect code, while others are too specific. Although the work was successful, some

migrations could not be expressed, primarily due to limitations of the language we used for the synthesis

(comby). In the next, we further explain and exemplify these problems, and introduce a more suitable lan-

guage to express complex API migrations.
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In this chapter, I present my published and completed work on a new code transformation language.

This language is designed to allow expressing flow, dependencies, and the composition of match-replace

rules. This effort is driven by the observation that most code changes (including library migrations) tend to

be cascading and interconnected; yet, modern languages for code transformations do not inherently offer

support for expressing sequences of changes. Indeed, we faced this problem in Chapter 4, where finding
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a balance between overgeneralization and overly specific rules was a persistent challenge, largely due to

expressiveness limitations stemming from the comby language.

5.1 Motivation

Library migrations usually result in a web of cascading and interdependent code changes that span and prop-

agate across multiple files or repositories [115]. For example, consider the library migration from Figure 5.1,

where the goal is to replace log4j (a logging library for Java) with an alternative slf4j. We divide the

migration in four steps:

1. Migrating Imports: Replace the import statement for the Logger type, org.apache.log4j.Logger,

with its slf4j equivalent, org.slf4j.Logger.

2. Migrating Instantiation: In contrast to log4j, in slf4j logger objects are instantiated using a fac-

tory method pattern (implemented in the slf4j.LoggerFactory class). Therefore, it is necessary to

replace the Logger.getLogger call with LoggerFactory.getLogger.

3. Adding Missing Import: Since getLogger is a method of a different class (slf4j.LoggerFactory),

it is also necessary to include the appropriate import statement for this class.

4. Migrating Associated Method Calls: Migrate all method calls associated with the logger to their slf4j

equivalents. In this example, it is only necessary to update the logger.info usage.

While it might be feasible to express these migration steps as individual transformation rules (for example

using comby [98]), such a strategy is suboptimal for multiple reasons.

Runtime Performance. Applying transformation rules indiscriminately to an entire code base, regardless

of the file’s relevance to the type or object in question, can lead to significant overhead and result in slow

and resource-intensive tool executions. For example, suppose our goal is to migrate a code base from log4j

to slf4j as described above. Here, we notice that despite there being multiple steps in the migration, only

files with logger objects need to be touched. One proxy for detecting such files is by looking up an import

statement, as imports typically indicate usage. This means that our migration scripts can be designed to only

attempt to migrate a file (and execute the rules corresponding to the migration), if an import statement to

log4j is present. This is particularly relevant when dealing with large-scale migrations across codebases with

millions of lines of code.

Accuracy and Precision. Match-replace rules typically provide limited control over which code should be

transformed. For example, the import statement in (Line 2, Step 3) is necessary only if the getLogger

API is migrated within the file and the import is not already present. Additionally, the migration of the

info API (Line 8, Step 4) should only affect the logger object that was migrated in (Line 5, Step 2). Calls

to other objects with an info API from another object should not be affected. Writing such constraints in
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1 - import org.apache.log4j.Logger;

2 + import org.slf4j.Logger;

3

4 class Example {

5 Logger logger = Logger.getLogger(Example.class);

6

7 void someMethod(Example example) {

8 logger.info(example);

9 logger.info(new Object());

10 logger.info(new StringBuilder("append0"));

11 }

12 }

Step 1: Migrate import

1 import org.slf4j.Logger;

2

3

4 class Example {

5 - Logger logger = Logger.getLogger(Example.class);

6 + Logger logger =

LoggerFactory.getLogger(Example.class);

7

8 void someMethod(Example example) {

9 logger.info(example);

10 logger.info(new Object());

11 logger.info(new StringBuilder("append0"));

12 }

13 }

Step 2: Migrate API for object creation

1 import org.slf4j.Logger;

2 + import org.slf4j.LoggerFactory;

3

4 class Example {

5 Logger logger =

LoggerFactory.getLogger(Example.class);

6

7 void someMethod(Example example) {

8 logger.info(example);

9 logger.info(new Object());

10 logger.info(new StringBuilder("append0"));

11 }

12 }

Step 3: Append necessary import

1 import org.slf4j.Logger;

2 import org.slf4j.LoggerFactory;

3

4 class Example {

5 Logger logger =

LoggerFactory.getLogger(Example.class);

6

7 void someMethod(Example example) {

8 - logger.info(example);

9 + logger.info("{}", example);

10 - logger.info(new Object());

11 + logger.info("{}", new Object());

12 - logger.info(new StringBuilder("append0"));

13 + logger.info("{}", new StringBuilder(...));

14 }

15 }

Step 4: Migrate other affected APIs

Figure 5.1: Migration steps to move from two popular logging libraries in java: log4j and slf4j.

the comby language would require additional scripting. An attempt at writing this rule in comby could be

:[x].info(:[args])-> :[x].info("{}", :[args]). However, such a rule would apply across the entire

codebase and not just to the previously migrated logger object. On the other hand, substituting logger for

:[x] would overly specialize the rule to this example: logger.info(:[args])-> logger.info("{}",

:[args]). This is particularly challenging to address when migrating common API names like append and

concat as discussed in Chapter 4.
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Expressiveness. Current techniques cannot express complex automations as match-replace rules. Generally,

to perform complex automations, developers have to rely on imperative code transformation frameworks in-

stead. These frameworks (e.g., [116, 117]) provide APIs for manipulating code at the AST level, allowing for

arbitrary code transformations. The APIs let users control where, when, and how code should be rewritten

based on context, symbol information, and more complex analyses. However, imperative frameworks present

a twofold problem. First, imperative frameworks are typically monuments of engineering, demanding signif-

icant time and effort to learn [118]. Second, the frameworks are typically language-specific, as they rely on

compiler and build infrastructure to be able to get meaningful information from the code. This results in

significant burdens as multiple developer experts are necessary for automating the same task in different

languages [119].

5.2 Preliminaries

5.2.1 Existing Code Transformation Languages

Frameworks for automating code transformation vary widely. At one end of the spectrum, lightweight tech-

niques [23, 63, 120] offer declarative languages to rewrite code with simple match-replace rules. The key

advantage of lightweight techniques is language agnosticism, which stems from these techniques being in-

dependent of the underlying compiler infrastructure. Moreover, match-replace rules are often syntactically

close to the target language, making them easy to write and use [23]. However, lightweight techniques are

often limited to atomic context-free code changes, lacking support for tasks requiring cascading and interde-

pendent code changes. On the other hand, imperative frameworks [121] for AST-level manipulation allow for

arbitrary code transformations. As discussed earlier, imperative frameworks provide infrastructure and finer

control over where, when, and how code should be rewritten based in analyses. These frameworks may not

be the best fit for learning migration scripts due to their large APIs, and their imperative nature. Synthesizing

arbitrary imperative programs is undecidable.

5.2.2 A novel Lightweight Language for Cascading Transformations

To address the limitations of existing lightweight match-replace tools (as described in 5.1), we have devel-

oped a new language called PolyglotPiranha. At a high level, PolyglotPiranha allows for sequencing of rule

applications as well as propagating information across rules using a directed graph of match-replace rules.

Programs in PolyglotPiranha are graphs, where the nodes represent individual transformation rules (ex-

pressed in a code transformation language of choice), and the edges determine the order for applying these

rules. Each edge is also associated with a label that defines the scope within which the target rule is ap-

plied with respect to the source rule. For example, an edge R1
class−−→ R2 reads as, "Apply rule R1 and then
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Replace Import

match org.apache.log4j.Logger

replace with org.slf4j.Logger

Update Logger Creation

match :[obj] = Logger.getLogger(:[name])

replace with :[obj] = LoggerFactory.getLogger(:[name])

Update Info

match :[obj].info(:[args])

replace with :[obj].info("{}", :[args])

using obj

Append Import if Needed

append import org.slf4j.LoggerFactory

where

enclosing (program @p)

not contains import org.slf4j.LoggerFactory

File

Class
File

Figure 5.2: Program in the DSL to described the migration for Figure 5.1. The dashed line represent a seed rule, i.e., the

rule that triggers the migration. Each edge is annotated with a scope. The scope determines where the target

rule will be applied with respect to the source.

apply rule R2 within the enclosing class where R1 was applied." The ability to cascade transformations using

match-replace rules makes it an ideal candidate for writing API refactoring rules.

Note that the goal of this research is not to design a new matching syntax language per se, but rather a

meta-language that allows for the combination and interleaving of existing match-replace languages, as well

as provide infrastructure to combine and sequence them. We build our approach on top of this idea of graph

of match replace-rules. In PolyglotPiranha:

1. We aim to allow users to express match-replace rules in any source code matching language. We pro-

vide alternative syntaxes, catering to different users and different needs. The current implementation

supports the tree-sitter query language, comby-like syntax, as well as regular expressions.

2. We enable match-replace languages to be interleaved in the graph (e.g., the first rule uses regular

expressions, while the second uses comby). Some tasks might be accomplished using simple regular

expressions, but for other comby might be a better option.

3. We support composition of match-replace rules using a set of language-agnostic filter primitives. The

goal is to enhance rule precision by leveraging the surrounding code context. Instead of writing a

match-replace rule, the idea is to write multiple rules and only transform the code if all conditions are

satisfied. In this sense, filters act as a set of pre-conditions.

5.2.2.A DSL Motivating Example

Figure 5.2 illustrates a program to automate the migration process outlined in Figure 5.1 in our proposed

language. In this example, rules are expressed in the comby syntax as explained in Chapter 4. A program in

our DSL is a graph of match-replace rules. The graph has a source/seed rule Replace Import, i.e., this rule

initiates and triggers the code transformations by replacing the log4j import. Replace Import is connected
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<rule_graph> ::= <rule>+ <edge>*

<edge> ::= from string to (string, scope)

<scope> ::= Global | File | n-Ancestors

| Method | Class

<rule> ::= name string match match

[replace [template_variable] with <replace>]

[where <filters>]

[using <holes>]

[is_seed bool]

<replace> ::= string <replace>

| template_variable <replace> | <>

<filters> ::= enclosing match [<contains>] <filters>

| not_enclosing match <filters> | <>

<contains> ::= contains match [at_least int] [at_most int]

| not_contains match | <>

<holes> ::= template_variable <holes> | <>

Figure 5.3: Syntax of our DSL for cascading code transformations. The elements inside square brackets are optional.

The symbol match is an expression for pattern matching (e.g., comby); the symbol template_variable

represents named capture groups from the match pattern.

to another rule Update Logger Creation with an edge labelled File. This means that the rule Update

Logger Creation’s application is restricted to the files affected by the Replace Import rule.

Furthermore, Update Logger Creation has two outgoing edges: (1) Update Info - for updating the

info API usage between the libraries, and (2) Append Import if Needed - for appending the import of

LoggerFactory if necessary. First, we seek to update the info API usage only for the Logger field that was pre-

viously updated. Thus, Update Info takes as input the :[obj] name from the previous rule, as indicated by

the using keyword. The value of :[obj] will be instantiated at runtime based on the previous rule. More-

over, the rule will only be applied within the same Class as indicated by the edge label. Second, the import

is appended to the File where the getLogger API was applied as indicated by the edge between Update

Logger Creation and Append Import if Needed.

Notice that the rule Append Import if Needed uses an extra clause called enclosing. Enclosing is a filter

that ensures the import is not added to the file twice. In this case, the filter is written in a combination of tree-

sitter and regular expressions. The enclosing pattern (program @p) is a tree-sitter query that matches the

entire source file. The not contains clause specifies a regular expression to check against enclosing source file.

The rule will only match if the source file does not already contain the import statement.

5.3 Language Syntax and Overview

Figure 5.3 describes the grammar of our DSL. A program in the DSL is a graph of match-replace rules. The rule

graph is captured as a list of directed and labelled edges. Each node represents an individual transformation

rule that structurally matches and rewrites code. Rules can also just match code without transforming it. The

edges between rules specify which rule to apply next and the scope where it should be applied.
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5.3.1 Edges

As shown in Figure 5.3, the edges are directed and labelled. Each edge connects either two rules or a rule to a

rule group, defining the order in which they should be applied, akin to the andThen operator1. The edge label

specifies the scope of application, selecting the portion of the code base upon which the target rewrite rule is

applied, with respect to the code that the source rule matched. For example, given an edge fromR1
method−−−−→ R2,

reads as “apply R1 and then apply R2 within the enclosing method where R1 was applied”.

The DSL supports two language-agnostic predefined scopes as shown in Figure 5.3. 1. Global the target

rule is applied across the codebase, 2. File the target rule is applied in the enclosing file. It is also possible to

support other language-specific scopes that depend on the granularity of the internal representation of code

within the implementation. The current implementation represents code internally with tree-sitter [122],

and supports three other scopes: 3. n-Ancestors the target rule is applied to the parent parse tree nodes of

the code fragment that the origin rule matched, 4. Method the rule is applied to the enclosing method where

the preceding rule was applied, and 5. Class scope refers to the enclosing class. Note that the language

specific scopes are set up only once per language.

5.3.2 Rules

Besides the name, a match-replace rule has 4 major components 1. match - a pattern to match source code,

2. replace - a pattern to rewrite the matched code, 3. filter - to filter out certain matches based on the sur-

rounding code, and 4. holes - variables referenced in the rule, these are filled at run time and serve as the

dynamic component of the rule. Furthermore, a rule could be a seed_rule. These seed rules are entry points

to the graph. This graph is traversed in a depth-first manner at each location where the rule was applied. A

valid rule graph contains at least one seed rule.

5.3.2.A Match.

The match expression is a declarative pattern that captures a code snippet with a specific structure or shape

(based on its parse tree). The match also labels portions of the matched parse tree like the named captured

groups [123] in regular expressions. Our DSL can support multiple structural matching languages, as long

as they support named capture groups (used to label portions of the code). The current implementation

supports concrete patterns, structural queries, and regular expressions.

Concrete Patterns: A concrete pattern is a string with template variables / holes, that is matched to concrete

syntax nodes [124] from the program’s parse tree 2. Formally, let 𝑠 be a concrete pattern containing holes

of the form :[var1], where each hole can represent syntactically valid sub-trees. A Concrete Syntax Tree
1https://docs.oracle.com/javase/8/docs/api/java/util/function/Function.html#andThen-java.util.function.Function
2We use Concrete Syntax Trees (CST) over Abstract Syntax Trees (AST) because we must preserve all syntactic structures within the

source code, which are necessary for source code matching
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Rule Matched code snippet Capture Groups

match :[x].info:[args] logger.info(example) x: logger, args: example

match import org.apache.:[name] import org.org.apache.log4j.Logger name: log4j.Logger

Figure 5.4: Example rules using concrete patterns applied to motivation example in Figure 5.1.

Rule Matched code snippet Capture Groups

match (method_invocation

object: (identifier) @obj

name: (_) @m

arguments: (object_creation))

logger.info(new StringBuilder("append0")) obj: logger, m: info

match ((field_declaration

(name: (identifier) @obj

(value: (method_invocation

name: (_) @m)))

(#eq? @m "getLogger"))

Logger logger = Logger.getLogger(A.class) obj: logger, m: getLogger

Figure 5.5: Examples of rules using simplified structural queries applied to motivation example in Figure 5.1.

(CST) node 𝑡 matches 𝑠 if, traversing 𝑡 in depth-first order yields leaf nodes with a string representation that

aligns with 𝑠 from left to right. Each hole can represent entire sub-tree structures (i.e., multiple sequential

leaf nodes under an internal node). This paradigm of matching is supported by multiple other tools (e.g., [23,

63]). PolyglotPiranha adopts the syntax proposed by [23] in their tool Comby. However, our concrete patterns

have stricter semantics compared to Comby. In our concrete pattern, a template hole, :[x], matches whole

syntactic structures / CST nodes, whereas Comby templates can represent arbitrary strings. Figure 5.4 shows

two examples.

Structured Query Language: A query consists of one or more patterns, where each pattern is an s-expression

that matches a certain set of nodes in a parse tree. These queries capture the structure of the target pattern

in terms of AST node types and string based predicates. This paradigm is programming language agnostic,

and is supported by systems like tree-sitter. PolyglotPiranha supports the s-expression based tree-sitter

queries [125]. Figure 5.5 shows two examples.

Each matching paradigm has distinct advantages and disadvantages. By construction structural queries

are more precise than concrete syntax because they can leverage node-types or absence of particular nodes,

and therefore leave less room for ambiguity (e.g., it is possible to differentiate between a field and a local

variable declaration). For example, matching method declarations is easier with structural query, because we
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Rule Source Code Update

match :[object].info(:[args])

replace :[object] with other_:[name]

logger .info(new Object())

other_logger .info(new Object())

match import org.slf4j.:[rest]

replace with -
- import org.slf4j.Logger

- import org.slf4j.LoggerFactory

Figure 5.6: Examples of replacement rules using concrete syntax. Notice that in the first example, the code is only partially

rewritten. Whereas in the second example, the entire code snippet is deleted.

would not need to account for all its syntactic variations (e.g., modifiers like public, static, final) like in

concrete syntax. In contrast, matching API invocation pattern like logger.info(example) (from Figure 5.1)

the concrete pattern is convenient and more succinct. The structural query for this pattern is verbose, and

requires knowledge of the target language’s grammar. Regex matching is more suitable for semi-structured

documents like markdown files. Note that PolyglotPiranha is not tied to these three languages, more can

be supported.

5.3.2.B Replacement.

The replacement pattern decides on how a matched code snippet should be transformed. It is possible to ei-

ther replace the entire matched code or just segments identified by a named capture group. The replacement

expression / pattern can be seen as partial function that is instantiated at run time by substituting a refer-

enced named groups or template variables with their values from either the initial match in the rule, or inputs

to the rules declared with the using keyword (i.e., code snippets captured in previous rule applications). In

Figure 5.6, we show two examples of replacement rules. In the first one, the code is only partially rewritten.

In the second example, the matched code is completely deleted because no target node is specified.

5.3.2.C Filters.

To make the rules more precise and context-aware, our DSL provides filters to control the application of a

rule based on the surrounding code. First, the candidate code to transform is checked against the matcher of

the rule. Then, at each matched location, the filters will check if the surrounding code of this location satisfies

certain criteria.

There are two primitive filters: 1. enclosing – checks if the primary match is enclosed by a parse tree

node that satisfies the given matcher, and 2. not_enclosing – checks if the primary match is not enclosed by

parse tree node that satisfies the given matcher. The enclosing filters can be further refined by specifying

contains and not_contains expressions. The contains (not_contains) expressions specify matchers
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Rule Source Code Update

Delete unused local variable

match :[var_name] = :[rhs];

replace with -

where enclosing (method_declaration)

contains :[var_name] atmost 1

def some_python_function() {

- int unused_variable = 42

execute()

}

Add import statement if absent

match (import_declaration) @p

replace with @p \n import org.slf4j.LoggerFactory;

where enclosing_node (compilation_unit)

not_contains import org.slf4j.LoggerFactory

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

class A {

Logger logger = LoggerFactory.getLogger(A.class);

}

Figure 5.7: Example rules using filters. Note how these rules leverage both concrete pattern and structural query. In the

first example, we use a contains filter inside the enclosing method declaration. This allows us to check if a

variable is used only once. If this is true, the usage corresponds to its declaration, and thus, can be safely

deleted. In the second example, the import is added only if it is not already in the code, as indicated in the

not contains predicate. Since the import is already present, the code is not rewritten.

that should (not) match at least once inside the enclosing_node. The user can also specify the frequency of

these matches with at_least and at_most attributes.

Holes. These serve as dynamic components within a rule. They describe input variables to the rule. At

run time, their corresponding values are populated from a symbol table (which maintains the bindings from

named captured groups to code snippets from current and previous applications). The example in Figure 5.2

showcases the usage of these holes. The rule Update Info declares the hole :[obj], which will be instanti-

ated during the transfromation based on the code matched in the previous rule Update Logger Creation.

5.4 Language Runtime

5.4.1 Algorithmic Overview

Algorithm 3 provides a high level overview for the language implementation and runtime. The core idea is to

maintain a queue of seed rules, and traverse the graph and the files in the codebase starting from each seed

rule. First, we validate the rule graph to prevent unexpected behavior using a data-flow analysis and syntactic

checks on the rules (Line 1). After the validation, we push the seed rules into a global queue and initialize an

environment / symbol table with the input substitutions (Line 4 - 5). The environment is used to store both
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Algorithm 3 Core procedure for transforming code

given a graph of rules
Input:

(R : RuleGraph, S : substitutions)

C : path to codebase

1: if ¬validate(R,S) then

2: return

3: end if

4: Q ← seedRules(R)

5: env← S

6: while notEmpty(Q) do

7: rule, _← Pop(Q)

8: loop

9: isApplied← false

10: for file in relevant(C, rule, env) do

11: isApplied ∨ =

12: executeRuleGraph(rule, file,R,Q, env)

13: end for

14: if ¬isApplied then

15: break

16: end if

17: end loop

18: end while

Algorithm 4 ExecuteRuleGraph function
1: function executeRuleGraph(rule, file, R, mut Q, mut env)

2: rulesStack← [(rule, file)]

3: isApplied← false

4: while notEmpty(rulesStack) do

5: rule, scope← pop(rulesStack)

6: rule← instantiate(rule, env)

7: while hasMatch(rule, scope) do

8: match← getMatch(rule, scope)

9: isApplied← true

10: ApplyEdits(match, rule, mut env)

11: for rule, scScope in successors(rule,R) do

12: if scScope ≡ Global then

13: Push(Q, (rule,Global))

14: else

15: scope← resolve(match, file, scScope)

16: Push(rulesStack, (rule, scope))

17: end if

18: end for

19: end while

20: end while

21: return isApplied

22: end function

the initial set of substitutions as well as the captured groups of from rule executions, which can be used as

dynamic elements in subsequent rules. Each seed rule is applied across the entire codebase recursively in a

depth-first fashion (Line 6), until no rules match (Line 8 - 15). For each relevant file (e.g., a file that is likely to

contain the match template of the rule, see Section 5.4.1.C), we invoke ExecuteRuleGraph (Algorithm 4). In

this step, the tool traverses over the CSTs and transforms the source code. For each match, it explores the

rule graph and stacks the rules in a DFS-manner (Line 12), applying them exhaustively within the scope. The

function ExecuteRuleGraph is not pure, it updates the environment, transforms the source code in-place, and

pushes new rules into the queue (Q). We detail each function of the algorithm more thoroughly in subsequent

sections.
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5.4.1.A Graph Validation

The first step in the core algorithm is to verify the graph (Line 1). In our implementation, PolyglotPiranha

statically validates the constructed graph to prevent unexpected behavior when the graph is applied to the

codebase. First, PolyglotPiranha checks if the individual rules’ matchers and filters are well-formed. For

example, PolyglotPiranha ensures that each regex compiles and that each s-expression parses correctly ac-

cording to the language’s grammar. It also conducts a data-flow analysis to ensure that no path in the graph

traversal leads to a rule where an input variable is not initialized correctly. This is implemented as a definite

assignment analysis [126]. If the graph is incorrect, PolyglotPiranha alerts the user to prevent panics that

could result from accessing undefined variables.

5.4.1.B Environment

The environment is a simple symbol table, which is initialized with the substitutions from the program (Fig-

ure 5.3). Rules can access symbol table variables if they have been declared. If a rule is triggered and a match

is found, the symbol table is updated by binding the matched source code to the corresponding named cap-

tured group in the symbol table. If a variable already exists in the symbol table, its entry gets over written.

Therefore a rule always gets instantiated with the most recent binding of the referenced symbol from the

environment. This kind of dynamic variable scoping can also be observed in languages like LaTeX or Bash.

5.4.1.C Relevancy check for performance

In rewriting large code bases, repeatedly parsing the entire codebase is inefficient, especially in monorepos

with millions of lines. The goal of the function relevant is to optimize code rewriting by only parsing files

whose content matches the concrete values assigned to the holes of the global rules (Line 10). In practice,

the concrete values to the input substitutions are used to filter out files that are not relevant to the trans-

formation using string matching. This simple insight improves PolyglotPiranha’s overall performance. The

implementation of PolyglotPiranha further boosts this by parallelizing the lookup using fork-join frameworks

(like Comby). Note that, PolyglotPiranha circumvents this optimization for holes that are referenced inside

the not_contains or not_enclosing clause.

5.4.2 Rule Graph Execution

Algorithm 4 describes the procedure executeRuleGraph that applies a given rule across a file. Each time a seed

rule is triggered, we initialize a stack (ruleStack) for depth-first traversal of the rule graph (Line 2). Then, we

pop rules from stack and apply each rule exhaustively within the specified scope (until hasMatch is false as

shown in Line 7). For each match, we update the environment with the new capture groups and transform

60



the source code by applying the rule (Line 10). Finally, we add the successors of the current rule in the graph

to the local stack or the global queue, and continue this until fix point (Lines 11 - 18).

5.4.2.A Optimizations.

PolyglotPiranha uses the tree-sitter [122] framework for parsing the source code. PolyglotPiranha main-

tains only one parse tree object in its memory, and updates this object sequentially leveraging the tree-

sitter’s incremental parsing feature. This eliminates the need to parse the file again from scratch after the

rewrite, thus optimizing PolyglotPiranha’s overall performance. Additionally, to minimize the impact on the

parse tree, by default our approach 1. orders the rules from inner to outer scope: starting from the parent,

to method, class, file, and finally to global scope, and 2. rewrites code bottom up. In the future, we plan to

support alternative transformation strategies.

5.5 Evaluation

Our language implementation is merged into the PolyglotPiranha repository, which is maintained on GitHub.

The tool is used internally at Uber with multiple use cases. In our evaluation, we aim to show key desirable

properties of the language for our use case. To do this, we evaluate PolyglotPiranha on three case studies

related to migration and code cleanup. In particular, we answer the following research questions:

RQ1. [Expressiveness] How expressive is the DSL for real-world code transformation tasks? We assess this

through three case studies. We highlight the complexity of each, and how to encode it in the DSL.

RQ2. [Effectiveness] How effective is our language at automating code changes? To what extent is it useful

in practice? We run the above tools across Uber’s proprietary codebase, and measure the percentage of Pull

Requests (PRs) that pass Continuous Integration (CI) and are merged without manual intervention. For PRs

with intervention, we measure the LoC changed by tools versus developer.

RQ3. [Comparison with state-of-the-art] How do tools built upon the DSL compare to similar tools built

upon state-of-the-art frameworks? We compare the PolyglotPiranha-based implementation against the

imperative variants developed upon ErrorProne [116] and OpenRewrite [127], and against its declarative

variants developed upon Comby [23] (a lightweight tool). We compare implementations in terms of size,

complexity and performance.

5.5.1 RQ1. Expressiveness

5.5.1.A Experimental Setup

To showcase the expressiveness of the DSL, we present three real-world case studies where we automate com-

plex code transformation tasks using PolyglotPiranha. In each case study, we highlight the complexity of
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Figure 5.8: Strongly connected components of the rule graphs for feature flag cleanup. The graph structure is language-

agnostic. Implementations accross languages require some adapations.

the task, and how the DSL can be used to encode it. We chose these three case studies because they are

high-impact tasks crucial to Uber’s operational needs and they are representative of the tasks that Uber or

other software companies would want to automate. Moreover, these tasks are not trivial to automate using

existing frameworks.

5.5.1.B Case study: Stale Feature Flag Cleanup

Feature flagging is a widely adopted and highly encouraged practice at Uber 3, and other major software com-

panies [128, 129]. It allows developers to modify configurations without redeploying, supporting A/B testing in

production. However, feature flags often become stale, and retaining them beyond their original purpose can

lead to technical debt. Therefore, it is important to automate their removal. Indeed, researchers [119] have

developed the Piranha tool for this purpose. Piranha is built on top of the ErrorProne [116] frameworks

for java and SwiftSyntax [130] for Swift. However, Uber’s codebase uses Kotlin and Go too. Instead of

developing two new language-specific tools, we used PolyglotPiranha to implement this transformation as

one tool supporting java, Kotlin, Swift and Go.

Figure 5.8 shows the strategy that we implemented for automating the cleanup of stale feature flags

at Uber. Each node in this figure is a strongly connected component or sub-graph of the original large

graph implementing the transformation. Here, each subgraph is a cleanup category. For instance, Simplify

boolean expressions contains rules that simplify nested boolean expressions with conjunctions, disjunctions

and negations. These rules are recursively applied until the expression cannot be further simplified. It should

be noted how the Simplify boolean expressions and Inline local variables and members call each other,

until no more simplification is possible. The Cleanup tests sub-graph is particularly interesting. In this sub-

graph we identify all the tests that explicitly set the feature flag to a specific Boolean value. If the set value is

the same as the status of the feature flag we elide the setter, else we delete the test case.

3In fact, our motivating example is a simplified version of feature flag cleanup we performed internally.
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1 - public enum IUIModesEnum {

2 + public interface IUIModes {

3 - DARK_MODE,

4 + @Param(key="DARK_MODE")

5 + BoolParam isDarkMode();

6 - LIGHT_MODE,

7 + @Param(key="LIGHT_MODE")

8 + BoolParam isLightMode(); }

(a) Example migration from enum-based feature

flag declaration to annotations.

1 class Consumer {

2 CachedExp ce = new Experiment();

3 + IUIModes um = IUIModes.create(ce);

4 public String color() {

5 - return ce.isTreated(DARK_MODE)

6 + return um.isDarkMode().value()

7 ? "Black" : "White";

8 }

9 }

(b) Source code update after the migration of enums to interfaces

as shown in Figure 5.9a.

Find is treated Usage

match :[r].isTreated(DARK_MODE)

is_seed True

Add Experiment field (if absent)

match CachedExp :[ce];

append \n IUIModes um=IUIModes.create(:[ce]);

where

enclosing_node (class_declaration)

not contains IUIModes :[name] = :[rhs]

Populate Experiment field name

match private IUIModes :[fld_name]

Update Feature Flag Usage

match :[r].isTreated(DARK_MODE)

replace with :[fld_name].isDarkMode.value()

using fld_name

Class

Class Class

Class

(c) Part of the original rule graph that migrates usages of the isTreated API. The input substitutions in the bottom right instantiates

this graph to migrate the DARK_MODE feature flag described in this figure.

Figure 5.9: Experimentation API usage update after the migration from enum-based feature flag declarations.

5.5.1.C Case Study: Experimentation API Migration

The Experimentation team at Uber developed a new feature flagging API to support its growing needs. It

was imperative for Uber to transform thousands of lines of their Android code to use this new API.

Figure 5.9 showcases the code changes required for the migration. The previous feature-flag API declared

feature flags using enum data types. To adapt the code to the new API, these enums need to be rewritten as

annotated abstract methods (as shown in Figure 5.9a). These annotations were added to specify metadata in-

formation for a feature flag such as key and namespace. After migrating the enum to an interface, this change

has to be propagated. For example, consider the feature flag usage in Figure 5.9b. Previously, the isTreated

method (Line 5) was invoked to check the status of the feature flag by passing the enum DARK_MODE, declared

in Figure 5.9a. However, with the new design clients are expected invoke the feature flag method isDark-

Mode() as shown in Line 6.
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company_kotlin_android_module(

name = "src_release",

plugins = [

"- //libraries/compiler:processor" ,

"//libraries/utilitites",

],

+ kotlinc_plugins = [

+ "//libraries/processor-kt:processor"],

tests = [":test_release"],

visibility = ["PUBLIC"],

)

(a) Changes to the BUCK file. Here the java dependency is

replaced with the Kotlin counterpart

- import com.co.ParameterUtils

interface UIParams{

@JvmStatic

fun create(cp:CachedParams): UIParams =

- ParameterUtils.create(UIParameters::class.java,cp)

+ UIParamsProvider.create(cp)

}

}

(b) Changes in the source code illustrating the usage of the

new Kotlin-based processor

Figure 5.10: Examples of modifications in the BUCK and Kotlin files for the annotation processor migration.

In practice, this migration has to accommodate many other caveats. To complete this migration, it is

necessary to also add new fields (e.g., IUIModes (Line 3, Figure 5.9b). This is handled by writing two rules as

shown in Figure 5.9c : 1. Add Experiment field - adds a field of type IUIMode (if absent), and 2. Populate

Experiment field name captures the name of the field of type IUIMode. The field name (i.e.:[fld_name])

is used in the following rule Update Feature Flag Usage, which is the actual rule used to replace the

isTreated API. Other nuances include deleting consequently unused members and imports and adapting

test cases accordingly.

5.5.1.D Case Study: Annotation Processor Migration

The goal of this migration is to transition the Android codebase from a java-based annotation processor

to a Kotlin-based system to improve overall performance. The changes required for this migration are

described in Figure 5.10. This migration requires changing all the build configurations (written in BUCK [131])

to be adapted by replacing the old processor dependency with the new one as depicted in Figure 5.10a.

Besides the build files, it is necessary to migrate all Kotlin files that initially used the java processor (shown

in Figure 5.10b). For example, Figure 5.10b shows how ParameterUtils.create is replaced with a Kotlin

equivalent method, create, and the unnecessary import statement is deleted.

5.5.2 RQ2. Effectiveness and Usefulness

5.5.2.A Experimental Setup

To evaluate the effectiveness of PolyglotPiranha’s framework, we show its effectivness on the three case

studies above by applying them to Uber’s proprietary code-bases. Specifically, the Android codebase is com-

posed of 7.5M LoC of java and 2.5M LoC of Kotlin, while the iOS codebase is composed of 7.5M LoC of
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Effectiveness Usefulness

Application Language # PRs
# PRs
(CI passes)

# PRs
(Accepted)

# files
updated

#+/- Lines

Stale Feature
Flag Cleanup

ð Java & Kotlin 2515 1413 817 2952 +15032 /-107635 †

 Swift 2186 1309 614 1733 + 21230 /-104721 ‡

Experimentation
API migration

ð Java 155 89 155 2146 +19157 /-19041 §

Annotation processor
migration

ð Kotlin & Python 25 25 25 2042 +2809 /-3897 ∥

† 85.7% was automated ‡ 95.3% was automated § 73.4% was automated ∥ 100% was automated

Table 5.1: PRS created and merged by the tool, as well as the % of LOC automatically deleted for each.

Swift. The PRs produced by our tools are reviewed by the appropriate teams, and merged if they pass the Con-

tinuous Integration checks and tests. The PRs that fail CI are expected to be manually fixed by the respective

team before merging. Note that this data represents months of company wide-effort.

5.5.2.B Results

Table 5.1 summarizes the overall results we obtained by running PolyglotPiranha based tools over our pro-

prietary corpora. For each application, it reports the number of PRs created, PRs accepted (and merged), and

PRs that pass the Continuous Integration checks and tests. At large, the three tools produced 4881 PRs in the

last six months of which 1611 have been accepted and merged into the main codebase at the time of writing

this paper. Particularly, for stale feature flag cleanup our acceptance rate is 52.5% (of PRs that pass CI) while

for the migrations it is unsurprisingly 100% (because the migrations were orchestrated centrally). These PRs

have deleted over 200k LoC of dead code and migrated over 20k LoC of old code to use the new APIs.

A – Stale feature flag cleanup The data for this experiment was collected between April and November

of 2023. PolyglotPiranha created a total of 4701 PRs, and reviewers did some kind of activity on 1727 (36.7%)

of the total number of PRs. These activities include, accepting the PR and merging it, commenting the PR, or

patching the PR before accepting it. There are still 1410 PRs that pass all CI checks and are still in queue for

review. Further, the reviewers have marked 114 PRs as Needs Changes status indicating that the they expect

extra cleanup from the tooling. For most of these PRs, the reviewers have reported issues with new features

and bugs. The reviewers abandoned 182 PRs, to assert that the cleaned up feature flags are not stale.

We observed that 56.2% of all the Android PRs and and 59.9% of the iOS PRs passed all CI checks. Uber’s

CI not only builds and tests the change, but it also employs over a hundred linters and bug-checkers to ensure

the quality of the change meets the Uber’s high standards. These checkers ensure there are no unreachable

and unreferenced elements (e.g. UnusedMethod check [132]), no sub-optimal code (e.g. ComplexBooleanCon-
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Figure 5.11: Lines deleted/updated by tool (blue) vs users (red)

stant check [133]) and no nullability errors [134].

The tool deleted 85.7% and 95.3% of all the total deleted lines across the Android and iOS codebases

(90.4% gross) respectively across all merged PRs, as shown in Figure 5.11a. We observed that 75.9% of the

PRs that were merged required no user intervention. However when the developer did intervene, they deleted

a lot of code before merging the PR, hence the mean number of lines deleted by user is skewed (𝜇 = 21.4,

𝜂 = 0). In few outlier cases developer deleted more than 900 lines of code. Probing further into these outlier

PRs, we discovered that developers had removed a collection of top-level classes that were guarded by the

flag. Some of these scenarios will be incorporated into the next version of our tool. However, very precise and

general support for such cleanups is impractical in our lightweight approach.

B – Experimentation API For the Experimentation API migration, we observed that 89 (59.9%) PRs passed

all CI checks. The main reason migration PRs to fail was non-standardized usage of the API and usage of

some specific API patterns that were not automated. Nonetheless, the tool still automated 73.4% of all lines

deleted. The migration was driven centrally by the team, therefore the all the PRs were immediately acted

upon after creation. The team reviewed these PRs, patched them if necessary and merged them.

The tool migrated 73.4% of the total lines deleted, however we observed that more than 74.8% PRs needed

some manual intervention. In these cases developers on average updated another 92 lines upon the changes

proposed by the tool. We observed that Uber developers also made manual changes to the PRs that pass CI.

These changes include class deletions, removing unused data files, updating comments and method names.
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Figure 5.12: Comparative analysis of Comby, Piranha, and PolyglotPiranha for stale feature flag clean up.

While refining rules can resolve certain scenarios, some require symbol or type information, and others, such

as method renaming and updating documentation, are beyond the scope of traditional tools. We also ob-

served that the team knowingly used the tool to perform partial migrations even for cases where all APIs

were not supported. The small spikes towards the tail end of the chart show these scenarios.

C – Anntoation processor migration All the 25 PRs for this migration passed CI and were merged auto-

matically, without any user intervention.

5.5.3 RQ3. Comparison with state-of-the-art code rewrite frameworks

5.5.3.A Performance

A – Experimental Setup We comparePolyglotPiranha-based stale feature flag cleanup againstPiranha [119]

and an equivalent we develop based upon Comby [23]. The Comby implementation has 29 rewrite rules for

java. It was particularly easy to develop the Comby variant because PolyglotPiranha’s concrete syntax DSL is

inspired by Comby. For this evaluation, we chose 24 stale feature flags randomly from the PRs that 1. passed

CI but were not accepted (at the time of writing this paper) 2. were used in java files (because Piranha only

supports java). Note that we only chose 24 feature flags because it takes significant manual effort to inte-

grate Piranha within our infrastructure due to Piranha depending on compilation4. For each feature flag,

we noted the affected sub-targets and their sizes. We then applied the three tools across the sub-targets and

the execution time was recorded. These experiments were performed on an enterprise-class VM in Google

Cloud Platform. Note that we neither compare the quality of the cleanups nor precision because by construc-

4While Piranha was developed and was previously integrated at Uber, however, both Uber’s feature flag API and developer infrastruc-

ture have changed since then
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Table 5.2: Comparison of PolyglotPiranha against existing tools

Bug Fixes Feature Flag Cleanup

Tool Metric CWE-338 slf4J java.security Android iOS

PolyglotPiranha
LoC 68 31 23 654 1156

# rules 4 3 3 31 42

Error-Prone LoC - - - 3467 -
SwiftSyntax LoC - - - - 1316

OpenRewrite LoC 145 87 92 - -

Comby # rules - - - 29† -

† This feature flag cleanup variant was developed for the experiments.

tion Comby uses a more loose representation of code, based on Dyck-extended grammars [23] (i.e., balanced

parenthesis grammars), whereas PolyglotPiranha uses language-specific grammars from the tree-sitter

reportoire, hence PolyglotPiranha transformations are more powerful and precise. Conversely, ErrorProne

and OpenRewrite can leverage semantic information like symbol/name resolution, for higher precision and

applicability, but are not polyglot.

B – Results The line chart in Figure 5.12a shows the performance of each of the tools for the set of flags we

identified above (ordered by the size of the corresponding sub-targets, ranging from 1.2K to 1.8M LoC). Poly-

glotPiranha took an average of 9.74 ± 3.46 seconds, Comby 121.67 ± 179.03 seconds (12.32×), and Piranha

413.91 ± 521.94 seconds (42.5×). We can see Piranha’s execution increases almost linearly with the target

size (due to the fact that Piranha relies on building the target). PolyglotPiranha and Comby depended on

the number of passes and files affected for the refactoring. The fact that PolyglotPiranha is faster than the

Comby-based variant is surprising because Comby has a string based matching approach with minimal over-

head. These results can be attributed to the fact that Comby has no sense of ordering between rules (nor

scope), therefore, the match-replace rules are applied across the entire subtarget. PolyglotPiranha’s perfor-

mance is also attributed to optimizations discussed in Section 5.4.1.C and 5.4.2.A.

Figure 5.12b shows the number of lines deleted by each of the tools for the same set of flags (in the same

order). PolyglotPiranha deletes more lines of code because it’s able to delete trailing commas and comments.

Note that we manually vetted that there are no over deletions in these PRs. In summary, PolyglotPiranha is

consistently faster while deleting more lines than its imperative alternative Piranha and a lightweight Comby-

based alternative.

5.5.3.B Expressiveness and Ease-of-use

A – Experimental Setup We compare the implementation of PolyglotPiranha-based tools against their

imperative variants. Specifically, we compare the PolyglotPiranha-based Stale Feature flag cleanup pro-
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gram against the implementation of Piranha [119]. Further we also encode three pre-existing code trans-

formation recipes developed by professional tool builders, specifically OpenRewrite - 1. (JHipster Upgrade)

Fix CWE-338 with SecureRandom [135] 2. (Slf4j) Loggers should be named for their enclosing classes [136]

3. (java.security) Use secure temporary file creation [137]. The selected patterns are 1. related to a popular

java library 2. involve multiple interdependent changes 3. have associated test cases for validation 4. clearly

fix a bug or security vulnerability.

B – Stale feature flag cleanup. As discussed in Section 5.5.3.A, Piranha is a stale feature flag cleanup

tool with multiple implementations, one for each language supported. This is because Piranha is built upon

language-specific imperative frameworks for code analysis and rewriting. To compare the expressiveness

and conciseness of both approaches, we qualitatively and quantitatively compare the Piranhajava and Pi-

ranhaSwift variants against their PolyglotPiranha-based counterparts.

PiranhaJava is built upon the ErrorProne [116] framework, whereas PiranhaSwift uses SwiftSyn-

tax [130]. Table 5.2 (right) shows that PolyglotPiranha based approach is significantly more concise in terms

of LoC. Moreover, rules can be re-used across languages. PolyglotPiranha-based Swift variant is more pow-

erful than PiranhaSwift (e.g., supports variable inlining and cleanup of the unused members).

In contrast, our Comby implementation for feature flag cleanup in Java comprises 29 rules. Due to Comby’s

limitations, we were unable to express 10 transformations from our PolyglotPiranha implementation, in-

cluding inlining singly-used boolean variables, deleting unused fields and variables, removing unnecessarly

nested blocks, and deleting files under certain conditions and enum blocks. Despite this, the rule count dif-

ference is minor: 31 for PolyglotPiranha versus 29 for Comby. This is because PolyglotPiranha allows for the

use of different, more powerful transformation languages. For instance, tree-sitter queries provide a syn-

tax for complex alternations. Therefore, the Comby variant ends up being more verbose, requiring additional

rules for the same task.

C – OpenRewrite OpenRewrite project is a semantic code search and transformation ecosystem. Its plat-

form allows writing code transformation recipes for common framework migration and stylistic consistency

tasks. We picked three relevant recipes written by professional developers, corresponding to high-impact

transformations. We implemented the same refactoring actions using PolyglotPiranha. Table 5.2 shows the

LoC count and number of rules for both PolyglotPiranha and OpenRewrite recipes. Our implementations

pass the tests of the OpenRewrite recipes.

5.6 Discussion

Transformation Correctness. PolyglotPiranha does not guarantee that the transformed code will compile,

be semantically correct, or precisely reflect the developer’s intent. This limitation is common to other syntax-
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driven code transformation tools such as [23, 63, 120]. While our dataflow analysis verifies the rule graph’s

consistency and grammatical accuracy (Section 5.4.1.A), the effectiveness and accuracy of transformations

ultimately rely on the quality of the rule graph itself.

Syntactic Limitations. PolyglotPiranha’s purely syntactic approach limits its ability to perform transforma-

tions that require semantic information of the code. In practice, this means that code rewrites that require

type resolution, class hierarchy analysis, and/or control-flow analysis can not be expressed in the DSL today.

Specifically, PolyglotPiranha: 1. lacks precise def-use information. We designed rules conservatively to iden-

tify def-use relationships within the syntactic scope of the variable declaration. However, due to the lack of

SSA representation and dominator information PolyglotPiranha cannot reason about variable shadowing or

re-initialization. 2. lacks precise type information. We approximate type information by analyzing declarations

within a scope. This falls short when dealing with language features that obscure type information, such as

Java’s var keyword or dynamically typed languages like Python. 3. lacks call-graph analysis. We approximate

caller-callee relationships using method names and their number of arguments, resulting in imprecision in

the presence of interfaces, class hierarchies, and method overloading. 4. cannot handle advanced language

features that require semantic analysis, such as reflection.

Despite these limitations, our evaluation showcases that PolyglotPiranha is effective at automating three

real-world code transformation tasks. Though imperfect, even in cases where it was partial, this automation

substantially alleviated developers’ load as seen in Figure 5.11a.

Supporting New Languages. PolyglotPiranha supports languages beyond the ones listed in the evaluation,

including Go, Python, Scala, Typescript, as well as protocol formats like Thrift. PolyglotPiranha uses

tree-sitter for code parsing, thus supporting a new language requires: 1. incorporating the tree-sitter

grammar within PolyglotPiranha, and 2. authoring scope-capturing rules in a configuration file (i.e., one rule

per scope such as class, method, or file). PolyglotPiranha uses these scopes when applying rules from the

rule graph. Note that tree-sitter officially supports 133 programming languages [122], including func-

tional languages like Haskell and Scheme. In fact, we support Scheme as a language in PolyglotPiranha,

and use it within PolyglotPiranha’s implementation for rewriting its structural queries (a subset of Scheme).

The implementation burden for this support was comparable to other languages.

Adapting PolyglotPiranha-based tools, like those for feature flag cleanup, to new languages may require

additional work. For example, a rule for simplifying a disjunction (true || :[a]) in Java needs to be

customized for Python as true or :[a]. However, we observed that some rules are reusable within a broad

family of languages (Java, Kotlin, etc).

PolyglotPiranha’s Usability. To assist users in debugging and root-causing failures due to errors in the rule

graph, PolyglotPiranha outputs detailed reports of all executed rules (in order) including their corresponding

matched LoC ranges, and runtime arguments in an easily queryable format. This allows for step-by-step
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replay and analysis. Our repository contains examples that explain how to enable debugging mode. We have

also developed a playground for rule experimentation that allows users to easily experiment with rules and

rules graphs on code snippets. This playground is publicly available on our artifact.

5.7 Key Takeaways and Contributions

In this chapter, we introduced a novel code transformation language, PolyglotPiranha. The language and

toolset were designed to support complex code transformations. We demonstrated desirable properties of

the language – namely, its expressiveness, usefulness, and run-time efficiency – through three case studies.

By construction, this language is more expressive than comby, while maintaining its lightweight and declara-

tive nature. Our goal was to enable complex code transformation to be expressed in a lightweight declarative

language, rather than resorting to language-specific and imperative toolsets for code manipulation. In the

next chapter, I introduce my proposed work on synthesizing complex API migration scripts in this language

for automating logically related changes (like the ones depicted in Figure 5.1 and Figure 5.9).
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In this chapter, I present my proposed work on automating logical code changes using migration graphs.

My objective is to generate migration scripts that encapsulate complex code transformations, going beyond

the straightforward API migration rules discussed in Chapter 4. These transformations typically involve mul-

tiple changes; for instance, in the migration example from Figure 5.9b, it is necessary to add a new field to

the class to use as an argument. Similarly, in Figure 5.1, the migration of the logger object triggers several

additional changes at various locations throughout the code.

I aim to synthesize these migration scripts and express them in the PolyglotPiranha language introduced

in Chapter 5. In order to collect data to synthesize these scripts, I propose to develop a novel method to

generate diverse and equivalent API usage examples across different libraries.
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6.1 Proposed Research Overview

My proposed approach is divided in two steps:

1. Generating Pairwise Training Examples: As previously noted, automated API refactoring tools typi-

cally work by mining data from clients projects that have undergone migration between libraries. How-

ever, such examples are scarse. To overcome this, I propose an approach to automatically generate

diverse migration pairwise examples that can be used for mining. In this approach, we seek to go be-

yond the simple example generation approach proposed introduced in Chapter 4. To do this, I plan to

collect a set of existing API examples from GitHub (and simplify them if necessary) in the source library.

Next, I will use a large language model pretrained on code from both the source and target libraries to

generate and test migration attempts from the model.

2. Synthesizing Rules Graphs in PolyglotPiranha: I aim to synthesize migration scripts in the Polyglot-

Piranha language using the equivalent pairs generated from the previous step. The migration scripts

will be synthesized using a set of predefined recipes or sketches.

6.2 Generating Synthetic Pairwise Examples

To synthesize rule graphs, we first need to collect a set of equivalent 1 API usages in the source and target

libraries. In Chapter 4, we showed that LLMs are capable of synthesizing equivalent API usage examples in

similar libraries. Our goal is to extend this approach.

We will use synthesis to generate and simplify API usage examples (e.g., [138]) from existing repositories

on GitHub. The plan is to collect realistic API usage examples in the source library and minimize or remove

irrelevant parts (similar to program slicing), and then convert these mined usages into minimal and functional

examples. Since the code will be simplified, we may need to adapt the code snippets to ensure they remain

functional, using either large language models or other synthesis techniques. This step allows us to mine

simple API usage examples in the source library.

Next, we plan to use an LLM pre-trained on the source and target libraries, to attempt to migrate the API

usage examples in the source to the target library. We will follow a generate and test approach. In many

cases, we expect the model to fail to migrate the usage examples. Thus, the programs will be tested for

equivalence before being taken as equivalent pairs of API usage. To compare the programs’ behaviour, we

will first extract comparable properties of the output of the APIs. For example, if the output of the programs

are list objects, a property could be its length, or its contents. Using properties allows us to easily compare

objects with different implementations and representations. The comparison functions will either have to be

synthesized or manually crafted depending on the objects the libraries manipulate. Then, we will test whether
1The term "equivalent" is used here loosely, as establishing true equivalence between programs is generally undecidable. We consider

two programs to be equivalent if they exhibit similar behavior across a comprehensive test suite.
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1 from Crypto.Cipher import AES as AES_PyCrypto

2 from Crypto.Random import get_random_bytes

3

4 cipher_pycrypto = AES_PyCrypto.new(aes_key, AES_PyCrypto.MODE_CTR, nonce=nonce)

5

6 ciphertext = cipher_pycrypto.encrypt(data)

(a) Encryption using PyCryptodome

1 from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes

2 from cryptography.hazmat.backends import default_backend

3

4 cipher_cryptography = Cipher(algorithms.AES(aes_key), modes.CTR(nonce + (b’\x00’ * 8)),

backend=default_backend())

5

6 encryptor_cryptography = cipher_cryptography.encryptor()

7 ciphertext = encryptor_cryptography.update(data) + encryptor_cryptography.finalize()

(b) Encryption using Cryptography

Figure 6.1: Equivalent implementation of AES encryption using PyCryptodome and Cryptography libraries.

the pairs of programs are equivalent using a set of automatically generated inputs using either fuzzing [139]

or property-based testing approaches [140].

Figure 6.1 shows an example of two equivalent API usage examples that GPT-4 generates in two different

cryptography libraries. In this case, to test for equivalence, we simply need to check whether the output string

(ciphertext) is the same for the same input data.

6.3 Generating Rules Graphs in the PolyglotPiranha language

Using the auto-generated examples, we will identify dependencies between individual APIs and understand

which portions are related (e.g., by finding data-flow and control-flow matchings between the APIs in the

source and the target [141]). Finding which APIs are related in the source and target may not be straightfor-

ward and require analyzing multiple API usages pairs simultaneously. For example, the instantiation of the

encryptor object in Line 6 of Figure 6.1b directly results from invoking the encrypt API in Line 6 of Figure 6.1a,

rather than the cipher creation.

Our approach to learning migration rules will be twofold:

1. Simple One-to-One Mappings: For straightforward mappings, we will create individual transformation

rules using the approach described in Chapter 4 for MELT. For example, in Figure 6.1, the migration of

cipher_pycrypto (Line 4, Figure 6.1a) from Pycryptodome to its equivalent in Cryptography (Line

5, Figure 6.1b) can be represented in a single comby rule. Note, however, that the API arguments differ
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between both libraries; the target API (Line 5, Figure 6.1b) requires an algorithms.AES object instead

of a direct aes_key, and also requires an additional argument, backend=default_backend(). This

extra argument is created in place. If it had been necessary to instantiate a class field instead, it would

not have been possible to represent this change in the comby language.

2. Complex Multi-Step Migrations: API migrations can be inherently related to others and result from

cascading changes. Therefore, they are better expressed within an ordered rule graph. For instance, the

migration of cipher_pycrypto.encrypt (Line 6, Figure 6.1a) is directly related to the migration of the

cipher_pycrypto object. Moreover, this API call is replaced with two API calls (Lines 7-8, Figure 6.1b)

in target libraries. Our approach will identify these complex migrations using data and control-flow

dependency analysis to generate concise migration subgraphs from sketches or migration recipes. In

this example, we would have an edge between the rule for object migration, and all the migration rules

corresponding to associated API calls. This allows us to have precise control over the transformed code.

The sketches for synthesizing the rules graphs will be manually crafted, incorporating specific structures

or patterns for migration that we have identified from experience in writing migration graphs, as well

as from previous research [127].

6.4 Evaluation Strategy

I will focus my efforts on libraries that manipulate objects that are in principle comparable across libraries.

These include libraries for: XML manipulation (e.g., xml.etree.ElementTree [142] and lxml [143]), cryp-

tography (e.g., Pycryptodome [144] and Cryptography [145]), compression, statistics, tensor manipulation,

logging, and JSON manipulation. To evaluate the approach, I will answer the following research questions:

RQ1. How accurate are the examples generated using our approach? This question aims to evaluate the

accuracy of the example generation approach. I will generate comprehensive test suites to test if the

programs are equivalent, as well as perform manual validation on a sample of examples. The goal is to

measure the percentage of programs that are equivalent.

RQ2. How effective is our approach in generating migration graphs in practice? I plan to assess this

by synthesizing migration graphs and applying them on a test set (i.e., use the rule graph to migrate

examples other than the ones used for learning). The goal is to test if our generated rule graphs can

accurately migrate programs. I also plan to manually validate rule graphs.

RQ3. How does our approach compare to existing state-of-the-art automated refactoring tools? I will

compare our approach with alternative tools in terms of (1) capability (i.e., which migration tasks can

each approach handle); (2) accuracy of the refactorings (i.e., correctness of the produced code), and

(3) run-time efficiency of the tools (i.e., time to execute the refactoring script). In particular, I intend to

compare the approach against my previous work on SOAR (3) and MELT (4).
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7
Conclusions

Refactoring is an important but laborious task. It ensures that code is better adaptable to future changes

and is robust. However, developers often struggle with refactoring and organizing code, as most companies

prioritize and incentivize feature development over refactoring. To help developers be more efficient and

refactor faster, we propose a modern language and toolset for large-scale code transformation. To further

facilitate the refactoring process, we also propose three different approaches to automated API refactoring.

Our approaches advance the state of the art in multiple dimensions: first, they do not rely on or require

training examples, which are scarce; second, the migrations are expressed in a simple, easy-to-read, and

modifiable language that can be interpreted and changed by developers; third, they are fast, scalable, and

can express complex, multi-step migrations.
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